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Abstract In this paper, we propose an ultrafast auto-

mated model compression framework called SeerNet for

flexible network deployment. Conventional non-differen-

tiable methods discretely search the desirable compres-

sion policy based on the accuracy from exhaustively

trained lightweight models, and existing differentiable

methods optimize an extremely large supernet to ob-

tain the required compressed model for deployment.

They both cause heavy computational cost due to the

complex compression policy search and evaluation pro-

cess. On the contrary, we obtain the optimal efficient

networks by directly optimizing the compression policy

with an accurate performance predictor, where the ul-

trafast automated model compression for various com-

putational cost constraint is achieved without complex

compression policy search and evaluation. Specifically,
we first train the performance predictor based on the

accuracy from uncertain compression policies actively

selected by efficient evolutionary search, so that in-

formative supervision is provided to learn the accu-

rate performance predictor with acceptable cost. Then

we leverage the gradient that maximizes the predicted

performance under the barrier complexity constraint
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for ultrafast acquisition of the desirable compression

policy, where adaptive update stepsizes with momen-

tum are employed to enhance optimality of the ac-

quired pruning and quantization strategy. Compared

with the state-of-the-art automated model compression

methods, experimental results on image classification

and object detection show that our method achieves

competitive accuracy-complexity trade-offs with signif-

icant reduction of the search cost. Code is available at

https://github.com/ZiweiWangTHU/SeerNet.

Keywords Automated model compression · Perfor-
mance predictor · Compression policy optimization ·
Uncertainty estimation · Evolutionary search

1 Introduction

Deep neural networks have achieved the state-of-the-

art performance on a wide range of vision tasks such as

image classification (He et al., 2016; Phan et al., 2019;

Simonyan and Zisserman, 2014), object detection (Liu

et al., 2016; Ren et al., 2015), video analysis (Feichten-

hofer et al., 2019; Wang et al., 2019b) and many others.

Nevertheless, deploying deep neural networks on mobile

devices with limited resources for inference is usually

impractical due to the heavy computational and storage

complexity. Moreover, parameters in well-trained net-

works are proven to be highly redundant (Denil et al.,

2013). Therefore, it is necessary to compress deep neu-

ral networks according to hardware configurations for

flexible deployment.

In order to reduce the complexity of deep models,

network pruning (He et al., 2017; Liu et al., 2018b;

Molchanov et al., 2019) and quantization methods (Wang

et al., 2021a, 2022a,b) have been widely studied, which

https://github.com/ZiweiWangTHU/SeerNet
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Fig. 1 Comparison between (a) non-differentiable methods,
(b) differentiable methods and (c) our SeerNet.Conventional
non-differentiable and differentiable frameworks both result
in heavy computational cost due to the complex compression
policy search and evaluation stages. Our SeerNet directly op-
timizes the compression policy with a learned accurate perfor-
mance predictor via efficient gradient ascent, and obtains the
networks for deployment by finetuning the lightweight models
compressed via selected pruning and quantization policies.

also degrade the model performance due to the network

capacity decreases. Pruning removes redundant model

components that have little impact on performance,

and quantization decreases the bitwidth of weights and

activations with low-precision Multiply-Accumulate op-

erations (MACs). Because the hardware resources vary

across different deployment scenarios, selecting the op-

timal compression policy under the device constraint is

important to obtain the ideal performance. Hardware

equipment with strict resource limit should adopt ex-

tremely compressed models to satisfy the complexity

constraint, while that with adequate resources only re-

quires slight network complexity reduction to achieve

high performance. To accomplish this, automated model

compression methods have been proposed, where the

optimal pruning ratio or the bitwidth for each con-

volutional layer is chosen according to the accuracy-

complexity trade-off. Non-differentiable methods (He

et al., 2018b; Lou et al., 2019; Wang et al., 2019a) apply-

ing reinforcement learning and evolutionary algorithms

discretely search the optimal compression policy based

on the accuracy from exhaustively trained lightweight

models, and differentiable approaches (Qu et al., 2020;

Wang et al., 2020b, 2021b) optimize the component

weights in an extremely large supernet containing all

compression policies to acquire the desired lightweight

model for deployment. However, the complex compres-

sion policy search and evaluation process in both non-

differentiable and differentiable methods leads to heavy

search cost for automated model compression. For ex-

ample, the hardware configurations of mobile devices

can be selected from different GPUs, FPGAs and many

others, and the battery levels can also vary during us-

age. Therefore, conventional methods with heavy search

cost prohibit flexible network deployment due to the

frequent changes of model complexity constraint.

In this paper, we present an ultrafast SeerNet frame-

work to learn the optimal model compression policy

with the device resource constraint for flexible network

deployment. Unlike existing non-differentiable and dif-

ferentiable methods which undergo the complex com-

pression policy search and evaluation process, our method

directly optimizes the compression policy with an ac-

curate performance predictor. The optimal compression

policy is obtained via gradient ascent that maximizes

the predicted accuracy, so that the efficiency of flexible

model deployment is dramatically enhanced via remov-

ing resource-exhaustive compression policy search and

evaluation. More specifically, we first learn the perfor-

mance predictor via the accuracy from uncertain com-

pression policies actively selected by evolutionary search,

where the uncertainty is estimated via the performance

variation with respect to the compression policy per-

turbation. The actively selected uncertain compression

policies offer informative supervision to learn accurate

performance predictor with acceptable cost, which can

be utilized for flexible model deployment under different

hardware scenarios. Then the gradient that maximizes

the predicted accuracy under the barrier complexity

constraint is leveraged for ultrafast acquisition of the

desirable compression policy, and adaptive update step-

sizes with momentum are utilized to strengthen the op-

timality of the obtained pruning and quantization strat-

egy. Figure 1 demonstrates the comparison between

our SeerNet and the conventional non-differentiable and

differentiable automated model compression methods

with complexity constraint calculated by Bit-Operations

(BOPs), where our framework achieves ultrafast com-

pression policy selection for flexible network deploy-
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ment. Compared with the state-of-the-art automated

model compression methods, experiments on the CIFAR-

10 (Krizhevsky and Hinton, 2009) and ImageNet (Deng

et al., 2009) for image classification and on PASCAL

VOC (Everingham et al., 2010) and COCO (Lin et al.,

2014) for object detection show that our method achieves

competitive performance with significantly reduced search

cost. Our contributions are summarized as follows:

(1) We propose the ultrafast compression policy opti-

mization framework which differentiably searches

the pruning and quantization strategies on the per-

formance predictor with the highest accuracy under

the constraint of computational cost budget.

(2) We present an active compression policy evalua-

tion method that samples the most uncertain prun-

ing and quantization strategies, so that the accu-

rate performance predictor is learned in acceptable

training cost with informative supervision.

(3) We conduct extensive experiments on image classi-

fication and object detection, and the results con-

sistently show that the presented SeerNet achieves

competitive accuracy-complexity trade-offs with sig-

nificant reduction of compression policy search cost.

2 Related Work

We briefly review three related topics including (1) model

compression, (2) AutoML and (3) active learning.

2.1 Model Compression

Pruning and Quantization are two widely adopted strate-

gies for model compression. Pruning aims to remove the

unimportant network components that have least influ-

ence on the performance, while quantization decreases

the bitwidths of network weights and activations and

substitutes float MACs with the low-precision ones.

Network pruning has been comprehensively stud-

ied in recent years because the model performance is

nearly unaffected with sizable complexity degradation.

Early attempts (Han et al., 2015a; Liu et al., 2015)

cut off the redundant fine-grained neurons and con-

nections in an unstructured manner, which limited the

actual acceleration on hardware equipment due to the

irregular weight parameters. To address this, channel-

pruning methods were later proposed, where the en-

tire convolution channels were pruned according to the

defined importance score. He et al. (2017) iteratively

selected the channels for pruning with Lasso regres-

sion and finetuned the lightweight networks. The defi-

nition of the channel importance score have been also

widely studied for effective pruning. The L1 and L2

norm of activations were used as the importance score

in (Li et al., 2016) and (He et al., 2018a) respectively.

Molchanov et al. (2016) and Peng et al. (2019) lever-

aged the first-order and second-order Taylor expansion

with respect to the objective to evaluate the channel

importance. Meanwhile, advanced sparsity regulariza-

tion strategies (Li et al., 2019a, 2020a; Louizos et al.,

2017) have been presented to achieve better trade-offs

between the model accuracy and complexity. Neverthe-

less, the uniform pruning ratio across layers for various

hardware configurations prohibits flexible network de-

ployment due to the mismatch between hardware re-

sources and model complexity.

Network quantization has been widely adopted in

computer vision due to its efficiency in computation

and storage, which is divided into one-bit and multi-

bit quantization according to the bitwidth of network

weights and activations. For the former, Hubara et al.

(2016) and Rastegari et al. (2016) binarized weights

and activations for efficient inference. Liu et al. (2018a)

added an extra shortcut in consecutive layers to en-

hance the representational capacity of binary neural

networks. Gong et al. (2019) optimized the soft quan-

tization strategy so that the discrepancy between the

learning objective and the surrogate loss could be min-

imized. Bethge et al. (2020) increased the quality and

capacity of features by channel enlargement and fea-

ture refinement, and created the efficient stem architec-

tures to further reduce the computational cost of full-

precision layers. Therefore, they even achieved higher

accuracies than MobileNetV1 (Howard et al., 2017) with

similar computational complexity. Binary neural net-

works suffer from the extremely low network capacity,

and multi-bit networks have been proposed with wider

bitwidth and more sufficient representational power.

Choi et al. (2018) adaptively selected the activation

clipping threshold to learn networks in 2-5 bits with

high performance. Zhang et al. (2018) minimized the

quantization errors for all weights and activations to

alleviate the information loss. Li et al. (2019b) over-

come the training instabilities of four-bit object de-

tectors with hardware-friendly implementations. Sim-

ilar to pruning with uniform compression ratio, fixed-

bit quantization cannot satisfy the demand of different

deployment scenarios, where platforms with strict re-

source constraint require highly compressed models and

vice versa.

2.2 AutoML

Since the hardware configurations and battery levels

vary significantly in different deployment scenarios, ex-
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ploiting AutoML for automatic model compression arou-

sed extensive interest in computer vision. The goal of

AutoML is to select the compression policy that results

in the best performance with the hardware resource

constraint. Conventional AutoML frameworks for auto-

matic model compression can be categorized into non-

differentiable and differentiable methods based on the

search strategy. For the former, He et al. (2018b) and

Wang et al. (2019a) applied the reinforcement learning

to search the optimal layer-wise pruning and quantiza-

tion policy respectively according to the accuracy from

exhaustively trained networks. Wang et al. (2020a) used

the evolutionary algorithms to acquire the desired com-

pression policy and the architectures for the subnets

of the once-for-all networks (Cai et al., 2019). For the

latter, differentiable methods were presented to deal

with the difficulties in discrete optimization of non-

differentiable methods. Cai and Vasconcelos (2020) de-

signed an extremely large supernet containing all quan-

tization policies, and adjusted the importance of each

quantization policy via back-propagation. Wang et al.

(2020b) jointly searched the pruning and quantization

policy via variational information bottleneck and the

learned quantization mapping. Yu et al. (2020) con-

structed barrier penalty to ensure the obtained quanti-

zation policy satisfying the complexity constraint. How-

ever, complex model search and evaluation process in

both non-differentiable and differentiable methods causes

heavy computational cost for optimal compression pol-

icy acquisition, which prohibits the flexible network de-

ployment for various hardware configurations and bat-

tery levels. Jin et al. (2020) and Bulat and Tzimiropou-

los (2021) trained a once-for-all network that could be

quantized to any bits at runtime without finetuning.

The once-for-all network quantization methods are or-

thogonal to automated model compression and can be

combined with AutoML for further performance im-

provement.

2.3 Active Learning

Active learning enforces the model to acquire promis-

ing performance with few annotated training samples,

where part of the training data providing effective su-

pervision is labeled. The widely adopted criteria for

annotation in active learning is based on the informa-

tiveness of the selected sample, which is evaluated by

the prediction uncertainty. The uncertainty can be de-

fined as the entropy of the posterior distribution (Joshi

et al., 2009; Luo et al., 2013; Settles and Craven, 2008),

disagreement among different classifiers (Melville and

Mooney, 2004; Vasisht et al., 2014; Wu et al., 2022),

difference between the largest and the second largest

posterior probabilities (Balcan et al., 2007) and the dis-

tance to the boundary (Abbasnejad et al., 2020; Li and

Guo, 2014; Vijayanarasimhan and Grauman, 2014). Gal

et al. (2017) employed deep neural networks to esti-

mate task uncertainty through multiple forward passes

in a data-driven manner. Beluch et al. (2018) presented

a classifier committee to acquire accurate uncertainty

estimation according to the disagreement. Wang et al.

(2020c) selected informative samples for hash code learn-

ing by considering the pairwise similarity uncertainty.

Abbasnejad et al. (2020) generated the most uncertain

counterfactual sample with true labels by analyzing the

performance sensitivity to the input perturbation. Sid-

diqui et al. (2020) measured the uncertainty of the se-

mantic segmentation model via the inconsistency in

predictions across viewpoints, which significantly low-

ered the cost of pixel-wise annotation. In this paper,

we extend the active learning to efficiently train the ac-

curate performance predictor with acceptable training

cost, where only the most uncertain compression pol-

icy providing informative supervision is evaluated for

actual accuracy acquisition.

3 Approach

In this section, we briefly review automatic model com-

pression, which suffers from the heavy computational

cost in compression policy search and evaluation. Then

we introduce the details of compression policy optimiza-

tion via the performance predictor. Finally, we propose

active compression policy evaluation to learn the accu-

rate performance predictor.

3.1 Automated Model Compression

The automated model compression is critical for de-

ploying deep neural networks on different portable de-

vices, as it provides the optimal compression policy with

different computational cost constraint. The objective

of automated model compression is written as follows:

max
S,θ

ACCval(S(N ),θ)

s.t. C(S(N )) ⩽ C0 (1)

where N and S are the original networks and the com-

pression policy respectively. θ represents the parame-

ters of the compressed networks, and ACCval means the

accuracy on the validation dataset. C(S(N )) stands for

the complexity of the compressed networks and C0 is

the complexity constraint from device resources.

As shown in Figure 1(a), the non-differentiable meth-

ods take turns to search better compression policies and
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evaluate the sampled lightweight models. In the evalua-

tion process, all sampled lightweight models are trained

exhaustively to obtain the actual performance. During

the search stage, agents in reinforcement learning or

population in evolutionary algorithms are optimized to

achieve higher accuracy with lower complexity, where

the updated agents or population sample the best can-

didates for evaluation. As demonstrated in Figure 1(b),

the differentiable methods optimize an extremely large

supernet, where different compression policies form par-

allel modules for each layer. The output of all mod-

ules in each layer is added with different importance

weights before being fed forward to the next layer. For

the evaluation stage, the images are fed forward into

the supernet to acquire loss value. For the search stage,

importance weights of different modules are updated

via back-propagation. The optimal compression policy

is obtained by discretizing the soft module weights for

the converged supernet.

However, compression policy search and evaluation

in both non-differentiable and differentiable methods

cause heavy computational cost. The mobile devices

can be equipped with various hardware such as different

GPUs, FPGAs and many others, and the battery levels

can also vary during the usage. Hence, the heavy search

cost prohibits flexible network deployment because of

the frequent changes of model complexity constraint.

Our goal is to remove the resource-exhaustive compres-

sion policy search and evaluation to achieve ultrafast

automated model compression.

3.2 Ultrafast Compression Policy Optimization

In order to enhance the efficiency of automated model

compression, we directly optimize the compression pol-

icy according to the learned performance predictor. In

this section, we first introduce the learning objectives

of compression policy optimization and then detail the

compression policy update during the optimization.

3.2.1 Learning Objectives

The performance predictor consists of multi-layer per-

ceptron (MLP), which takes the compression policies

across all layers in the backbone architectures as input

and predicts the accuracy of the lightweight models.

Since the goal of automated model compression is to

select the compression policy that leads to the highest

accuracy with the given computational cost constraint,

the objective J for compression policy optimization is

written in the following form:

max J = f(s)

s.t. C(N s) ⩽ C0 (2)
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Fig. 2 (a) and (b) visualize the learning objectives of (4) and
(5) respectively, where A, O, B represent the initialized pol-
icy, the optimal policy after optimization and the discrete pol-
icy for deployment. Directly learning (4) fails to rigidly limit
the computational complexity of the lightweight model com-
pressed by the searched policy within the budget due to the
soft constraint, and results in sizable mismatch between the
optimal policy and the rounded one for deployment because
of the discrete nature of quantization and pruning policies.
In order to address these problems, we present barrier com-
plexity constraint and rounded policy gap minimization in the
policy optimization objective. (c) and (d) demonstrate the op-
timization process of vanilla gradient ascent and (8), where
M means the local maximum. Vanilla gradient ascent faces
the challenges of local maximum due to the non-convexity
and unstable training process because of the fixed stepsizes.
On the contrary, we present the momentum-based policy up-
date to escape from the local maximum and propose adaptive
stepsizes to stabilize the optimal policy search.

where f(s) means the predicted accuracy of the light-

weight model with the compression policy s. The defini-

tion of compression policy is s = [s1p, s
1
w, s

1
a, ..., s

L
p , s

L
w, s

L
a ],

where sip, s
i
w and sia stand for the channel pruning ratio,

weight bitwidth and activation bitwidth of the ith layer

out of L layers. In our implementation, weight bitwidth

siw and activation bitwidth sia are scaled to
siw

sw,max
and

sia
sa,max

, where sw,max and sa,max respectively represent

the largest weight and activation bitwidth in the search

space of compression policy. N s means the lightweight

models obtained by compressing the original networks

N with the compression strategy s. The network com-

plexity is defined as Bit-Operations (BOPs) (Bethge

et al., 2020; Louizos et al., 2018; Wang et al., 2020b)

calculated in the following:

C(N s) =

L∑
i=1

siws
i
a(1− si−1

p )(1− sip) · Ci
ori (3)

where Ci
ori = hiwik

i
hk

i
wci−1cib

i
wb

i
a demonstrates the

BOPs of the ith layer in the original networks. hi, wi

and ci respectively represent the height, width and the

number of channels of the output feature map in the
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ith layer, and kih and kiw stand for the kernel height

and width in the ith convolutional layer. For the full-

precision networks, the weight and activation bitwidths

of the ith layer denoted as biw and bia are usually set as

32. Since BOPs reveal the effect of model complexity

decrease induced by network pruning and quantization,

we utilize the reduction ratio of BOPs to reflect the

compression ratio.

Because better performance is usually obtained by

networks with higher capacity, the optimal compression

policy for (2) can be obtained when the model com-

plexity achieves the computational cost constraint C0.

In order to efficiently optimize the desirable compres-

sion policy, the Lagrange multipliers can be employed

to form the surrogate objective function with the hy-

perparameter λ, which is shown in the following:

max J = f(s)− λC(N s) (4)

When the optimization completes, rounding the pol-

icy to the nearest one on grids yields the pruning and

quantization policy for deployment due to their discrete

nature. Nevertheless, directly optimizing (4) deviates

the obtained compression policy from the optimal one

due to the following two reasons. First, the soft model

complexity constraint in the objective cannot strictly

limit the computational cost of the lightweight networks

within the budget, which usually leads to suboptimal

policies and huge search cost due to the repeated tri-

als. Second, because the final compression policy for

deployment is acquired by rounding the optimal pol-

icy to the nearest one on grids, the mismatch between

the searched optimal policy and the discrete policy for

deployment decreases the accuracy of the lightweight

models. In order to address these problems, we formu-

late the objective function J∗ for compression policy op-

timization containing the barrier complexity constraint

and rounded policy gap minimization:

max J∗ = f(s)− λ1Ω(C(N s))− λ2d(s, s0) (5)

where λ1 and λ2 are hyperparameters that demonstrate

the importance of different objective terms. Ω(C(N s))

means the barrier complexity loss for the lightweight

networks N s, which is assigned to zero for C(N s) less

than C0 and set to infinity otherwise. d(s, s0) represents

the distance between the compression policy s and its

discrete counterpart s0. Figure 2 (a) and (b) visual-

ize the learning objectives of (4) and (5) respectively.

The barrier complexity loss in our SeerNet ensures the

obtained optimal compression policy to satisfy the com-

putational budget with full utilization of computational

resources, and the rounded policy gap is minimized to

decrease the performance drop for policy discretization.

Algorithm 1 Compression policy optimization
Input: Network architecture N , performance predictor f ,

computational cost constraint C0, compression policy up-

date round Max iter.

Output: The optimal compression policy s∗.

Initialize: Randomly assign s where C(Ns) ≈ C0

2
.

for t = 1, 2, ...,Max iter do

Calculate the objective function of st via (5).

Compute the gradient with respect to st by (9).

Update the compression policy with the above gradient

according to (8).

if C(Nst
) ⩾ C0 then return compression policy st.

end if

end for

return compression policy st+1.

In order to enable the barrier complexity loss to be

differentiable, we design Ω(C(N s)) with the following

log-like function adopted from (Finlay et al., 2019; Yu

et al., 2020):

Ω(C(N s)) = − log(C0 − C(N s)) (6)

Since Ω(C(N s)) is only rapidly amplified by the loga-

rithm when approaching the complexity constraint C0,

the obtained lightweight model is strictly limited by

the complexity constraint with full utilization of the

computational resources. For the distance between the

compression policy s and its discrete counterpart s0, we

present the L2 norm to measure their similarity, which

is written as:

d(s, s0) = ||s− s0||22 (7)

where || · ||2 represents the L2 norm. Because s0 is ob-

tained by rounding s to its nearest policy on grids, we

relax s0 as a constant (Erin Liong et al., 2015) for gra-

dient back-propagation.

3.2.2 Compression Policy Update

As the predicted accuracy and the complexity of com-

pressed models can both be obtained by the differen-

tiable calculation, we leverage the gradient that maxi-

mizes the objective (5) with momentum to update the

compression policy:

st+1 = st + ϵt ·
gt

||gt||2
(8)

where st means the compression policy in the tth step

during the optimization. gt illustrates the accumulated

gradient in the tth step, and ϵt is defined as the step-

size in the tth step which is adaptively assigned. As

indicated in (Dong et al., 2018) that integrating the

momentum into iterative processes of input update can
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boost optimization, we adopt the accumulated gradi-

ents in the following that escape from the local maxi-

mum (Duch and Korczak, 1998; Sutskever et al., 2013):

gt+1 = µ · gt + (1− µ) · ∇sJ
∗

||∇sJ∗||2
(9)

where µ is a hyperparameter that balances the momen-

tum and the current gradient in the accumulated gradi-

ents. In order to stabilize the training process (Kingma

and Ba, 2014), the stepsize for compression policy up-

date in each step should be adjusted with respect to the

complexity difference between the current lightweight

model and the computational complexity constraint.

When the current policy is far from the complexity

constraint, the stepsize should be large in order to ac-

celerate training. On the contrary, the stepsize should

be small for policy optimization near the computational

cost budget due to the extremely large barrier complex-

ity loss, so that fine-grained optimization is adopted to

stably search the optimal policy within the complexity

constraint. We present the adaptive stepsize at the tth
step as follows:

ϵt = η · (C0 − C(N st)) (10)

where η is a hyperparameter and C(N st
) demonstrates

the complexity of the lightweight models compressed

by the policy in the tth iterative update step. Figure

2 (c) and (d) illustrate the vanilla gradient ascent and

the presented compression policy optimization respec-

tively, where our optimization process escapes from the

local maximum and stably obtains the policy with the

highest accuracy within the complexity constraint.

The compression policy update process stops until

reaching the computational cost constraint or achiev-
ing the maximum iteration steps. The detailed proce-

dures of ultrafast compression policy optimization are

shown in Algorithm 1, where flexible deployment across

different hardware configurations and battery levels is

achieved since the gradient of the performance predictor

consisting of several MLPs is calculated with extremely

little computational cost.

3.3 Learning Performance Predictor via Active

Compression Policy Evaluation

The acquisition of the optimal lightweight model via

differentiable compression policy optimization requires

the learned performance predictor to be precise, where

the gap between the predicted and actual performance

is negligible. Conventional accuracy predictors for net-

work architecture search (Dai et al., 2019; Wen et al.,

2020) randomly sample compression policies, and ac-

quire the actual performance by exhaustively training

Evolutionary Search for Uncertain 
Compression Policy

Fitness

1

0

Evaluation of Sampled Lightweight 
Models

75%

Performance 
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Accuracy

Accuracy
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3

5

78

74

0.5
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Fig. 3 The pipeline of learning the performance predictor
via active compression policy evaluation, where we iteratively
search the most uncertain compression policy defined by (15)
via evolutionary algorithms, obtain the actual accuracy of
sampled lightweight models via exhaustive training and up-
date the performance predictor with the actual accuracy of
sampled compression policy according to (12).

the lightweight models. Then the actual accuracy is em-

ployed to supervise the performance predictor that re-

gresses the accuracy of the compression policy. How-

ever, the number of sampled lightweight models for

evaluation is extremely small compared with the large

space of compression policies due to the limited com-

putational resources. Randomly sampled compression

policies fail to provide informative supervision for per-

formance predictor learning. On the contrary, we ac-

tively select the uncertain compression policy for eval-

uation to obtain its actual accuracy, and train the per-

formance predictor with the sampled policy that of-

fers informative supervision. We first demonstrate the

performance predictor learning with policy uncertainty,

and then depict the active selection for uncertain policy.

3.3.1 Performance Predictor Learning with Policy

Uncertainty

Training the performance predictor via compression poli-

cies with uncertain prediction provides informative su-

pervision, since the performance predictor obtains more

knowledge from those samples (Beluch et al., 2018; Gal

et al., 2017). Therefore, exhaustively training models

compressed by those policies makes significant contri-

bution to enhance the precision of the performance pre-

dictor. Figure 3 illustrates the pipeline of performance

predictor learning in our SeerNet. For a given back-

bone, we iteratively search the uncertain compression

policy via evolutionary algorithms, evaluate the sam-

pled lightweight models to obtain the actual accuracy,

and update the performance predictor with the actual

accuracy of sampled compression policies. The well-

trained performance predictor is employed for ultrafast

compression policy optimization, so that flexible net-
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work deployment with different resource constraint is

achieved without complicated compression policy search

and evaluation.

The influence of the compression policy perturba-

tion on predicted performance reveals prediction uncer-

tainty, where that sensitive to perturbation indicates

highly uncertain prediction (Abbasnejad et al., 2020;

Vijayanarasimhan and Grauman, 2014). Hence, the train-

ing loss of more uncertain compression policies should

be weighted more greatly to strengthen the supervision

informativeness. We employ the importance sampling

by reweighting samples in the objective function R(w)

to train the performance predictor with the parameters

w (Abbasnejad et al., 2020; Goyal et al., 2019):

min
w

R(w) = Es∼p(s)Ea∼p(a|s)l(f(s), a)

= Es∼p(s)Ea∼p(a|ŝ)l(f(s), a)
p(a|s)
p(a|ŝ)

(11)

where a means the actual accuracy and ŝ represents the

perturbed counterpart of s. p(s) is the prior distribu-

tion of the compression policy. p(a|s) and p(a|ŝ) demon-

strate the posterior distribution of accuracy given the

compression policy s and the perturbed one ŝ respec-

tively. l(f(s), a) is the loss function of accuracy pre-

diction, which is defined as the mean squared error

(MSE). In the importance sampling, the compression

policy whose accuracy varies more significantly with the

perturbation acquires larger weights in the learning ob-

jective. Since we leverage deterministic neural networks

to predict the accuracy of various lightweight models,

we optimize the following alternative objective R∗(w)

for the performance predictor, which is mathematically

formulated in the appendix. The goal of (11) is to heav-

ily weight the compression policy whose predicted ac-

curacy is very different from the perturbed one, and we

present the L2 difference between predicted accuracies

of the vanilla compression policy and the perturbed one

as importance weights in the alternative objective:

min
w

R∗(w) =

N∑
i=1

∑
ŝi

(f(si) − ai)2 · ||f(si) − f(ŝi)||22 (12)

where N is the number of actively sampled compres-

sion policies for performance predictor training. si and

ŝi mean the ith sampled compression policy and its

perturbed counterpart. ai represents the actual accu-

racy of the ith compressed model obtained via exhaus-

tively training. The L2 difference of the predicted ac-

curacy between the compression policy si and the per-

turbed counterparts reflects the importance weight. By

penalizing the compression policy that is more sensi-

tive to perturbation, the accurate performance predic-

Algorithm 2 Active performance predictor learning
Input: Backbone Network N , the number of compression

policy sampling K, performance predictor learning round

Max ro, evolution round Max iter.

Output: Accurate performance predictor f∗.

Initialize: Randomly assign the weights of f .

for t = 1, 2, ...,Max ro do

Randomly sample K/Max ro compression policy s.

for i = 1, 2, ...,Max iter do

Generate perturbed compression policy ŝ via (13).

Predict the performance f(s) and f(ŝ).

Select the top-k compression policy with the highest

fitness according to (15).

Mutation and crossover for the next generation s.

end for

Train and validate Ns for actual performance.

Train f with the actual performance of s via (12).

end for

return the performance predictor f .

tor is learned by informative supervision with accept-

able training cost.

3.3.2 Active Selection for Uncertain Policy

In this section, we introduce the details for the search

strategy of uncertain compression policies, which pro-

vides informative supervision for performance predictor

learning. The uncertainty of the compression policy is

evaluated by the accuracy sensitivity with respect to

the perturbation on the policy space. The network ca-

pacity revealed by the complexity varies differently with

the channel pruning ratio or the bitwidths of weights

and activations across layers, because the pruning and

quantization policies for different layers contribute di-

versely to the overall BOPs. Since the network capac-

ity has significant influence on the model accuracy, the

compression policy variation for uncertainty evaluation

should enforce all perturbed counterparts to change the

network capacity identically. Therefore, the uncertainty

of different policies should be fairly estimated without

the impacts of the network capacity variation.

Specifically, we generate each perturbed compres-

sion policy ŝ for the original one s by modifying one

element with the following criteria:

{ŝ
∣∣|sk − ŝk| = αm · I[k = m], k = 1, 2, ..., 3L} (13)

where sk and ŝk mean the kth element of s and ŝ, and

the indicator function I[x] equals to one for true x and

to zero otherwise. By varying m ∈ {1, 2, ..., 3L}, we ac-

quire 3L perturbed policies that increase and decrease

BOPs respectively, which result in 6L perturbed poli-

cies in total for the uncertainty evaluation of s. Mean-

while, αm is the scale coefficient to ensure the complex-
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ity variation consistency for various perturbed policies:

αm = B0 · (
∂C(N s)

∂sm
)−1 (14)

where B0 is a hyperparameter that demonstrates the

model capacity variation for policy perturbation, and
∂C(N s)

∂sm
depicts the sensitivity of the model complexity

C(N s) defined in (3) with respect to the element sm.

Because the compression policy with high prediction

uncertainty contributes significantly in performance pre-

dictor learning according to (12), we sample the com-

pression policies for actual performance acquisition via

the following criteria in order to provide most informa-

tive supervision:

s = argmax
∑
ŝ

||f(s)− f(ŝ)||2 (15)

Since the compression policy space is extremely large,

we present the evolutionary search to select the most

uncertain compression policy for the performance pre-

dictor training. In the evolutionary search, the genes

are the vectors s representing the compression policy.

We first randomly select the genes for initialization and

obtain the their fitness F defined as F =
∑

ŝ ||f(s) −
f(ŝ)||2. The top-k genes with the highest fitness are

chosen for generating off-spring genes via the muta-

tion and crossover process. The mutation process is

carried out by randomly varying a proportion of ele-

ments that demonstrate the pruning ratio and quanti-

zation bitwidths in the genes, and the crossover process

means that we recombine the pruning and quantiza-

tion policies in two parent genes for off-spring genera-

tion. By iteratively selecting the top-k genes with the

highest fitness and generating new genes with mutation

and crossover, the compression policy with the most

uncertain prediction is selected, which offers informa-

tive supervision for performance predictor learning. As

the fitness of candidates can be evaluated by predict-

ing the accuracy of the compression policies and their

perturbed counterparts, the evolutionary search for the

uncertain compression policies is computationally effi-

cient. Algorithm 2 demonstrates the active performance

predictor learning process, where the performance pre-

dictor is learned offline and utilized in ultrafast com-

pression policy optimization for flexible deployment.

4 Experiments

In this paper, we conducted extensive experiments to

evaluate our methods on the CIFAR-10 and ImageNet

datasets for image classification and on the PASCAL

VOC and COCO datasets for object detection. We first

briefly introduce the datasets and the implementation

details, and then verify the effectiveness of the pre-

sented ultrafast compression policy optimization and

active compression policy evaluation for performance

predictor learning via ablation study. Finally, we com-

pare our SeerNet with the existing automated model

compression methods to show our superiority.

4.1 Datasets and Implementation Details

We introduce the datasets we carried experiments on

and data preprocessing techniques in the following:

CIFAR-10: The CIFAR-10 dataset includes 60, 000

samples with the resolution of 32×32, which are equally

divided into 10 classes. We leveraged 50, 000 and 10, 000

images as the training and test sets respectively. We

padded 4 pixels on each side of the images and ran-

domly cropped them into the size of 32×32. Moreover,

we scaled and biased all pixels into the range [−1, 1].

ImageNet: ImageNet (ILSVRC2012) consists of ap-

proximately 1.2 million training and 50K validation im-

ages collected from 1, 000 categories. Following the data

preprocessing techniques of bias extraction applied in

CIFAR-10, we randomly cropped a 224 × 224 region

from the resized image whose shorter side was 256 dur-

ing the training process. For inference, we adopted a

224× 224 center crop from the validation images.

PASCAL VOC: PASCAL VOC includes images

from 20 different classes. Our model is trained on the

VOC 2007 and VOC 2012 trainval sets consisting of

about 16k images, and we evaluated our SeerNet on

VOC 2007 test set containing around 5k images. Follow-

ing (Everingham et al., 2010), we employed the mean

average precision (mAP) as our evaluation criterion.

COCO: The images in the COCO dataset were

collected from 80 different categories, and our exper-

iments were conducted on the 2014 COCO object de-

tection track. We trained our model with the combi-

nation of 80k images from the training set and 35k

images selected from validation set (trainval35k (Bell

et al., 2016)), and tested our SeerNet on the remain-

ing minival validation set (Bell et al., 2016) including

5k images. Following the standard COCO evaluation

metric (Lin et al., 2014), we apply the mean average

precision (AP) for IoU ∈ [0.5 : 0.05 : 0.95] as the evalu-

ation metric. We also report average precision with the

IOU threshold 50% and 75% represented as AP50 and

AP75 respectively. Moreover, the average precision of

small, medium and large objects notated as APs, APm

and APl are also depicted.

For image classification, we employed architectures

of VGG-small (Zhang et al., 2018) and ResNet20 (He

et al., 2016) for automated model compression on CIFAR-

10, and compressed ResNet18, ResNet50 and MobileNetV2
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(Sandler et al., 2018) architectures with various com-

putational cost constraint on ImageNet. For object de-

tection, we adopted the SSD (Liu et al., 2016) frame-

work with VGG16 and the Faster R-CNN (Ren et al.,

2015) framework with ResNet18. Our performance pre-

dictor consisted of three fully-connected layers with the

ReLU activation function. We iteratively trained the

performance predictor with the accuracy of sampled

lightweight models and actively searched uncertain com-

pression policies via evolutionary algorithms.

In the sampled compression policies, the choices for

the pruning ratio of all layers were {0.25, 0.5, 0.75},
while the selections for the weight and activation bitwidths

of each layer were set as {2, 4, 6, 8}. Since quantizing

the weights and activations in the first and last layers

with low-precision significantly degrade the model per-

formance, we set the bitwidth of the first and last lay-

ers of the backbone to 8 following (Wang et al., 2019a).

For perturbed compression policy generation, the hy-

perparameter B0 was positively related to the original

BOPs of the full-precision networks. Varying each el-

ement in the compression policies yields 6L perturba-

tion for networks with L layers, and we only randomly

sampled 0.5L perturbed compression policies for per-

formance prediction to reduce the computational cost

in uncertainty estimation. We trained 800 lightweight

models with different compression policies for accuracy

acquisition in order to learn the performance predictor

of each backbone and dataset. 50 compressed models

were actively sampled for evaluation and performance

predictor training in each round out of 16 rounds, where

the compression policies that initially trained the per-

formance predictor were randomly selected. We set the

population size to be 100 in the evolutionary search

for uncertain compression policies, where the top-25

candidates based on (15) produced the next genera-

tion. 50 candidates randomly mutated with the muta-

tion rate 0.1 for the compression policy of each layer.

For crossover, the compression policy of each layer was

randomly chosen from 50 parent candidates. The max

iterations were 500 for the best candidate selection.

In compression policy optimization, the hyperpa-

rameters λ1 and λ2 in the objective were 0.1 and 0.005,

and the hyperparameters µ for gradient accumulation

and η for adaptive stepsizes were 0.9 and 0.05. The

maximum iteration step for updating the compression

policy was 30. We randomly selected compression policy

whose complexity was approximately half of the compu-

tational cost constraint for initialization, and updated

the compression policies until reaching the maximum

iteration or the computational cost constraint.

We employed the max response selection (Han et al.,

2015b) that pruned weights according to the magnitude

for channel pruning. Meanwhile, we followed the imple-

mentation in (Wang et al., 2019a) for weight and acti-

vation quantization. During training of the lightweight

networks, we used the Adam optimizer (Kingma and

Ba, 2014) with the batchsize of 256. For CIFAR-10, we

initialized the learning rate as 0.001 and decayed twice

at the 60th and 80th training epochs out of 100 epochs,

where the learning rate multiplied 0.1 for each decay.

For ImageNet, the learning rate started from 0.005 and

decayed at the 20th and 40th in the total 60 epochs with

the same decay rate. The backbone for object detection

was pretrained on ImageNet following the above imple-

mentation details. For the network finetuning on object

detection, the learning rate was initially set as 1e-3 and

decreased to 1e-4 and 1e-5 at the 40th and 60th epoch

out of 80 epochs for PASCAL VOC, and started from

0.001 with the same decay strategy at the 6th and 10th
epoch during 12 training epochs for COCO.

4.2 Ablation Study

To verify the benefits of active compression policy eval-

uation for performance predictor learning, we conducted

the ablation study to assess our performance predictor

w.r.t. different sampling strategies for compression poli-

cies and various numbers of sampled lightweight models

on ResNet20 and ResNet50. With the same architec-

tures, we varied the perturbation magnitude in uncer-

tainty estimation with different numbers of perturbed

compression policies in order to show the influence.

For the ablation study of compression policy opti-

mization with ResNet20, we validate the effectiveness

and efficiency by comparing the accuracy-complexity

trade-off with the optimal lightweight models obtained

via other search strategies including reinforcement learn-

ing and evolutionary algorithms. In order to verify the

impact of the barrier complexity loss, the rounded pol-

icy gap minimization, the momentum-based policy up-

date and adaptive stepsizes in our ultrafast compression

policy optimization, we report the accuracy-complexity

trade-off of compression policies obtained via different

combinations of the above techniques. Moreover, we in-

vestigate the impact of the initialization and the step-

size scale of policy update. The ablation study was con-

ducted on CIFAR-10 with the BOPs constraint 0.2G

and 0.4G for ResNet20 and ResNet50 respectively.

4.2.1 Effects of Performance Predictor Learning

Performance w.r.t. different sampling strategies

and varying numbers of sampled lightweight mod-

els: We trained the predictor with the actual accura-

cies of 50, 100, 200, 400, 800 and 1, 200 compressed
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Fig. 4 (a) and (b) report the MSE (×10−5) between the
predicted and actual accuracy of the sampled compression
policies with different sampling strategies and varying num-
bers of samples for ResNet20 and ResNet50 architectures re-
spectively. (c) and (d) show that with various perturbation
magnitude and different numbers of sampled perturbed poli-
cies in uncertainty estimation for ResNet20 and ResNet50.

models obtained via random and active compression

policy evaluation, where 50 compression policies were

also randomly sampled for validation. We depict the

MSE between the actual and predicted accuracies in

Figure 4 (a) and (b) for ResNet20 and ResNet50. Our

active sampling strategy chooses the uncertain com-

pression policies that provide informative supervision

for performance predictor learning, so that the pre-

dicted accuracy is more precise compared with the ran-

dom sampling strategy. The advantages are more obvi-
ous for small training sets, which reveals the benefits

of our active sampling for automated model compres-

sion in extremely low search cost. Training the per-

formance predictor for ResNet50 requires more sam-

pled policies to achieve low prediction error due to the

larger search space. However, sampling more compres-

sion policies only slightly influences the MSE between

the actual and predicted accuracies when the training

set exceeds 800 samples for the ResNet50 architecture,

and we evaluated 800 compression policies to learn the

performance predictor in other experiments. The actual

and predicted accuracies of randomly and actively sam-

pled policies on different datasets across various net-

work architectures are demonstrated in the appendix.

Impacts of perturbation magnitudes and the

number of sampled perturbed policies in un-

certainty estimation: The hyperparameter B0 repre-

sents the model capacity changes caused by perturbed

compression policies, and we employed different set-

Table 1 The accuracy on CIFAR-10, computational com-
plexity and the search cost (GPU hours) of the optimal com-
pression policy obtained by reinforcement learning, evolu-
tionary algorithms and our compression policy optimization
(CPO) under the computational cost constraint BOPs less
than 0.2G for ResNet20, where the reward for agents in re-
inforcement learning and fitness for population in evolution-
ary algorithms based on accuracy and model complexity were
obtained via the learned performance predictor. The training
cost is 0.58 GPU hours for the lightweight models.

Acc.(%) BOPs(G) Cost
Reinforcement learning 92.03 0.19 0.34
Evolutionary algorithms 92.10 0.19 0.50

CPO 92.51 0.20 0.003

tings for B0 and show the influence on performance

predictor learning. Given the perturbation magnitude

of model capacity, we randomly sampled various num-

bers of perturbed compression policies and report the

MSE between predicted and actual accuracies. 50 ran-

domly sampled compression policies were utilized for

validation. Figure 4 (c) and (d) demonstrate the re-

sults on ResNet20 and ResNet50 respectively. Medium

B0 results in the minimal MSE in both architectures, as

small perturbation fails to collect sufficient information

for uncertainty estimation and large one considers non-

local information that has little contribution to uncer-

tainty. Meanwhile, the optimal perturbation magnitude

in ResNet50 is larger than ResNet20 due to the higher

original model complexity of backbone networks. Sam-

pling more perturbed compression policies positively

contributes to the precision of the performance pre-

dictor learning because of more accurate uncertainty

estimation. However, sampling over 0.5L perturbation

for each policy only slightly improves the uncertainty

estimation, while the computational cost increases sig-

nificantly. To maintain high computational efficiency,

we randomly sampled 0.5L perturbation of each policy

for uncertainty estimation in the rest experiments.

4.2.2 Effects of Compression Policy Optimization

Comparison with other search strategies: To val-

idate the effectiveness and the efficiency of our ultrafast

compression policy optimization, we compare the accu-

racy and the computational complexity of the optimal

lightweight models searched by reinforcement learning

and evolutionary algorithms, where the reward for agents

in reinforcement learning and the fitness for popula-

tion in evolutionary algorithms were obtained via the

learned performance predictor. For reinforcement learn-

ing, we modified the implementations in (Wang et al.,

2019a) by adding the pruning ratio in the state and ac-

tion space. For evolutionary algorithms, we leveraged

the pipeline in (Wang et al., 2020a) where the branch

of architecture search was removed. The detailed imple-
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Table 2 The BOPs(G), compression ratio and the accuracy on CIFAR-10 of the obtained lightweight ResNet20 architectures.
The existence of barrier complexity loss (Bar.) and the rounded gap minimization (Gap.) in the learning objective was varied.
F\M, F&M, A\M and A&M respectively stand for fixed stepsizes without momentum, fixed stepsizes with momentum, adaptive
stepsizes without momentum and adaptive stepsizes with momentum.

Bar. Gap.
F\M F&M A\M A&M

BOPs Comp. Top-1 BOPs Comp. Top-1 BOPs Comp. Top-1 BOPs Comp. Top-1

× × 0.193 216.58 88.41 0.188 222.34 88.58 0.197 212.43 90.39 0.196 213.27 90.63

✓ 0.183 227.47 89.10 0.192 217.58 89.25 0.196 213.27 91.19 0.198 211.11 91.38

✓
× 0.195 214.35 88.23 0.193 216.58 88.79 0.191 218.85 90.94 0.192 217.71 91.22

✓ 0.198 211.11 89.35 0.197 212.43 89.64 0.200 209.00 91.75 0.200 209.00 92.51

mentations of reinforcement learning and evolutionary

algorithms are demonstrated in the appendix. Table 1

demonstrates the accuracy, model complexity and the

search cost of different search algorithms. Our ultrafast

compression policy optimization acquires highest accu-

racy within the computational complexity constraint,

and the search cost can be negligible compared with

reinforcement learning and evolutionary algorithms.

Performance w.r.t. different terms in learn-

ing objectives and various techniques in policy

update: Table 2 demonstrates the BOPs, compression

ratio and accuracy of obtained light-weight networks

with various objectives and update techniques. The ex-

istence of barrier complexity loss and the rounded gap

minimization in the learning objectives was varied. The

impacts of the presented adaptive stepsizes and the

momentum-based gradient in compression policy up-

date were also investigated. Comparing the model com-

plexity and the accuracies across different rows, we con-

clude that more computational resource under the con-

straint is utilized with accuracy improvement via the

barrier complexity loss. Meanwhile, the rounded policy

gap minimization shrinks the difference between the op-

timal policy and the discrete one for deployment, and

better accuracy-complexity trade-off is achieved. Com-

paring the performance across various columns, we ob-

serve that the adaptive stepsizes yield lightweight mod-

els with better performance within the expected com-

plexity because of stable optimization process. More-

over, the gradient momentum provides historical infor-

mation of the optimization process so that the obtained

compression policy can escape the local maximum.

Performance w.r.t. different compression pol-

icy initialization: To investigate the influence of the

compression strategy initialization on the performance

of our compression policy optimization, we show the

actual accuracies and the computation complexity of

the optimal lightweight models w.r.t. the complexity of

initialized compression policy in Figure 5 (a). The re-

sults show that medium complexity for initialized com-

pressed models acquires the highest accuracy given the

complexity constraint. High complexity for initialized

lightweight models attains local minimum during the

compression policy update, while low complexity for

(b) Varying stepsize scale(a) Varying initialization

Fig. 5 The actual accuracy and computation complexity of
the optimal lightweight models obtained by our compression
policy optimization with (a) different initialization and (b)
various update stepsize scale under the computational cost
constraint BOPs less than 0.2G, where the ResNet20 archi-
tecture on CIFAR-10 was evaluated.

initialization cannot converge to the optimal compressed

models before reaching the complexity constraint.

Performance w.r.t. various update stepsize

scale η: The update stepsize scale is controlled by the

hyperparameter η in (10), where low η generally leads

to small stepsizes and vice versa. Figure 5 (b) depicts

the actual accuracy and the computational complexity

of the optimal compressed models acquired via different

parameter settings of η. Medium stepsizes outperform

other choices. Small stepsizes fail to achieve the opti-

mal compression policy when reaching the maximum

update iterations due to the local maximum, and large

stepsizes enforce ultrafast compression policy optimiza-

tion to be hard to converge.

4.3 Comparison with the State-of-the-art Methods

We compare our SeerNet with the fixed-precision quan-

tization methods including LQ-Nets (Zhang et al., 2018),

APoT (Li et al., 2020b), RQ (Louizos et al., 2018), LSQ

(Esser et al., 2019), AdaBits (Jin et al., 2020), BitMixer

(Bulat and Tzimiropoulos, 2021) and mixed-precision

quantization approaches such as ALQ (Qu et al., 2020),

DQ (Uhlich et al., 2019), BP-NAS (Yu et al., 2020),

HAQ (Wang et al., 2019a), HMQ (Habi et al., 2020),

HAWQ (Dong et al., 2019). Meanwhile, we compare

the accuracy with the state-of-the-art automated model

compression method DJPQ (Wang et al., 2020b) where

the pruning and quantization policies were jointly searched.

In order to show the performance in different accuracy-
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Table 3 Comparison of network complexity, classification
accuracy and search cost on CIFAR-10 with state-of-the-art
network compression methods in VGG-small and ResNet20.
W/A means the bitwidth of weights and activations re-
spectively, and the computational complexity is measured
by MACs (G) and BOPs (G). Comp. represents the net-
work compression ratio calculated by the BOPs, and Acc.
means the accuracy on image classification. The search cost
is demonstrated by GPU hours, where N means the number
of deployment scenarios. The number in the bracket of search
cost for mixed-precision quantization demonstrates the break-
even point of baseline methods whose search cost is higher
than our SeerNet. The training cost for each model of VGG-
small and ResNet20 is 0.43 and 0.58 GPU hours respectively.

Methods W/A MACs BOPs Comp. Acc. Cost

VGG-small

Baseline 32/32 0.494 506.0 − 92.80 −
LQ-Nets 4/4 0.494 7.91 64.00 92.12 −
ALQ mixed 0.494 7.44 68.00 90.90 1.3N(11)

SeerNet mixed 0.459 7.35 68.84 92.97 13+0.003N

DQ∗ mixed 0.613 3.40 185.00 91.59 0.9N(15)

SeerNet mixed 0.340 3.88 130.41 92.84 13+0.003N

DJPQ∗ mixed 0.367 2.99 210.37 91.54 0.5N(27)

SeerNet mixed 0.223 2.27 222.91 92.69 13+0.003N

ResNet20

Baseline 32/32 0.041 41.8 − 92.51 −
APoT 4/4 0.041 0.65 64.00 92.45 −
HMQ mixed 0.041 0.65 64.00 92.59 2.0N(11)

SeerNet mixed 0.038 0.63 65.02 92.71 21+0.003N

BP-NAS mixed 0.041 0.39 106.35 92.12 1.1N(20)

SeerNet mixed 0.030 0.34 122.94 92.55 21+0.003N

BP-NAS mixed 0.041 0.32 128.97 92.04 1.1N(20)

SeerNet mixed 0.038 0.20 209.00 92.51 21+0.003N

complexity trade-offs, we leveraged three BOPs con-

straints for each architecture. The reduction in MACs

demonstrates the network pruning ratio, and the BOPs

decrease reveals the total compression effect. Therefore,

we define the reduction ratio of BOPs as the compres-

sion ratio. The reported search cost only contains com-

putational cost to obtain the optimal compression pol-

icy, and that of baseline methods is evaluated by rerun-

ning the released code or our re-implementation. The

total cost for model deployment can be easily calcu-

lated by summing the search cost and the training cost.

The break-even points indicates the number of scenar-

ios where the search cost is higher than our SeerNet.

The acquired compression policy of our SeerNet for dif-

ferent architectures is visualized in our appendix.

4.3.1 Comparison on Image Classification

Comparision on CIFAR-10: Table 3 shows the ex-

perimental results on CIFAR-10 with VGG-small and

ResNet20. ∗ represents the methods utilizing the VGG7

architecture which is very similar to VGG-small. The

fixed-precision quantization ignores the importance va-

riety among different layers and fails to effectively as-

sign the optimal bitwidth for each layer. The mixed-

precision quantization does not consider the redundancy

Table 4 The BOPs(G), top-1 classification accuracy and
search cost on ImageNet with state-of-the-art network com-
pression methods in MobileNet-V2, ResNet18 and ResNet50.
The training cost for each model of MobileNet-V2, ResNet18
and ResNet50 is 37.4, 60.8 and 80.9 GPU hours respectively.

Methods W/A MACs BOPs Comp. Top-1 Cost

MobileNet-V2

Baseline 32/32 0.33 337.9 − 71.72 −
RQ 6/6 0.33 11.88 28.44 68.02 −

HMQ mixed 0.33 10.97 30.80 71.40 31.4N(24)

SeerNet mixed 0.25 10.82 31.22 71.47 750+0.004N

HAQ mixed 0.33 8.25 40.96 69.45 51.1N(15)

DJPQ mixed 0.28 7.87 42.96 69.30 12.2N(62)

SeerNet mixed 0.22 7.69 43.91 70.76 750+0.006N

HMQ mixed 0.33 5.25 64.40 70.90 33.5N(23)

DQ mixed 0.33 4.92 68.67 69.74 21.6N(35)

SeerNet mixed 0.19 4.88 69.26 70.55 750+0.006N

ResNet18

Baseline 32/32 1.81 1853.4 − 69.74 −
ALQ mixed 1.81 58.50 31.68 67.70 34.7N(15)

SeerNet mixed 1.37 56.94 32.55 69.72 500+0.003N

DJPQ mixed 1.39 35.01 52.94 69.27 18.2N(28)

HAWQ mixed 1.81 34.00 54.51 68.45 22.7N(23)

SeerNet mixed 1.22 31.84 58.21 69.48 500+0.004N

LSQ 3/2 1.81 10.86 170.66 66.90 −
BitMixer 2/2 1.81 7.24 256.00 64.40 −

ALQ mixed 1.81 7.24 256.00 66.40 38.5N(13)

SeerNet mixed 0.70 7.19 257.71 67.84 500+0.004N

ResNet50

Baseline 32/32 3.86 3952.6 − 76.40 −
HAQ mixed 3.86 94.92 41.64 75.30 67.2N(15)

SeerNet mixed 3.34 91.99 42.97 76.70 950+0.005N

HAWQ mixed 3.86 61.29 64.49 75.48 34.5N(28)

LQ-Net 4/4 3.86 61.76 64.00 75.10 −
AdaBits 4/4 3.86 61.76 64.00 76.10 −
SeerNet mixed 2.97 59.66 66.25 76.61 950+0.006N

AdaBits 3/3 3.86 34.74 113.78 75.80 −
HMQ mixed 3.86 37.72 104.8 75.45 49.4N(20)

BP-NAS mixed 3.86 33.22 118.98 75.71 35.6N(27)

SeerNet mixed 2.12 31.67 124.81 75.90 950+0.007N

in different channels while the pruning strategy can fur-

ther enhance the model efficiency. Compared with the

state-of-the-art mixed-precision networks BP-NAS, our
SeerNet enhances the accuracy by 0.47% (92.51% vs.

92.04%) with 1.60× BOPs reduction (0.20G vs. 0.32G)

with the ResNet20 architecture. Although the auto-

matic model compression method DJPQ jointly searches

the pruning and quantization policy, the search defi-

ciency leads to heavy computational cost due to the

extremely large search space. On the contrary, our Seer-

Net obtains the optimal lightweight model without com-

plex compression policy search and evaluation, so that

the proposed method only requires 0.003 GPU hour

to marginally search an automated model compression

policy on both VGG-small and ResNet20. Because the

number of deployment scenarios is usually very large

in realistic applications with frequent changes of hard-

ware configurations and battery levels, the compression

policy search cost is reduced sizably in our SeerNet.

Comparison on ImageNet: The results on Ima-

geNet with MobileNetV2, ResNet18 and ResNet50 are

demonstrated in Table 4. Mixed-precision quantization
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Table 5 Comparison of BOPs(G), mean average precision
and search cost on PASCAL VOC with existing network com-
pression methods, where the SSD framework with VGG16
and Faster R-CNN with ResNet18 was employed. The train-
ing cost for each model of VGG16 and ResNet18 is 19.5 and
18.7 GPU hours respectively.

Methods W/A MACs BOPs Comp. mAP Cost

SSD & VGG16

Baseline 32/32 27.14 27787.7 − 72.4 −
HAQ mixed 27.14 846.67 32.82 68.9 48.8N(17)

SeerNet mixed 18.23 768.25 36.17 69.7 800+0.005N

DJPQ mixed 16.11 627.12 44.31 66.8 29.1N(28)

SeerNet mixed 14.68 622.76 44.62 68.8 800+0.005N

BP-NAS mixed 27.14 453.60 61.26 66.7 33.2N(25)

SeerNet mixed 13.59 435.27 63.84 67.3 800+0.006N

Faster R-CNN & ResNet18

Baseline 32/32 22.01 22534.8 − 74.5 −
APoT 5/5 22.01 550.17 40.96 71.2 −
SeerNet mixed 19.04 526.39 42.81 73.4 650+0.005N

HMQ mixed 22.01 343.41 65.62 71.3 28.9N(23)

DJPQ mixed 17.19 349.54 64.47 69.7 27.2N(24)

SeerNet mixed 15.21 339.64 66.35 72.3 650+0.005N

BP-NAS mixed 22.01 298.63 75.46 69.7 22.4N(30)

SeerNet mixed 13.22 298.43 75.51 71.8 650+0.006N

outperforms fixed-precision quantization by a larger mar-

gin on ImageNet compared with CIFAR-10 as the op-

timal bitwidth assignment makes more contribution to

the image classification on challenging datasets. Com-

pared with the state-of-the-art mixed-precision quanti-

zation method BP-NAS, our SeerNet improves the top-

1 accuracy by 0.19% (75.90% vs. 75.71%) and decreases

BOPs by 1.05× (31.67G vs. 33.22G) with the ResNet50

architecture due to the automated pruning strategy.

Meanwhile, the marginal search cost is decreased by

5086× (35.6 GPU hours vs. 0.007 GPU hours). Com-

pared with the state-of-the-art automatic model com-

pression method, our SeerNet directly optimizes the

compression policy with the discriminative performance

predictor without resource-exhaustive compression pol-

icy search and evaluation process. We obtain better

accuracy-complexity trade-off with only 0.05% and 0.02%

marginal search cost compared with DJPQ in MobileNet-

V2 and ResNet18 respectively. The marginal cost re-

duction is much more sizable on ImageNet compared

with CIFAR-10 due to the significantly increased train-

ing cost for each sampled compression policy in exhaus-

tive evaluation, which shows the superiority of our Seer-

Net in deployment facing largescale datasets.

4.3.2 Comparison on Object Detection

Comparison on PASCAL VOC: Table 5 illustrates

the computational complexity and the mAP of differ-

ent compression methods on PASCAL VOC, where the

search cost does not contain the computational cost

for the model pretraining on ImageNet. Similar to im-

age classification, the mixed-precision networks achieve

more optimal accuracy-complexity trade-offs with dif-

ferent computational cost constraints. Our SeerNet en-

hances the mAP of the state-of-the-art DJPQ by 2.6%

(72.3% vs. 69.7%) in the Faster R-CNN framework with

VGG16, where the BOPs are similar. Moreover, Seer-

Net only requires 0.005 GPU hour compared with 27.2

GPU hours in DJPQ for marginal compression policy

search. The significant search efficiency improvement

enables flexible model deployment for different hard-

ware configurations and battery levels in realistic appli-

cations relying on object detection such as autonomous

driving (Chen et al., 2017), which usually requires mod-

els with hundreds of complexity constraints.

Comparison on COCO: Despite of the BOPs and

the mAP on COCO, we also show the average precision

at different IoU thresholds and that for objects in var-

ious sizes. Table 6 depicts the results, where our Seer-

Net achieves better accuracy-complexity trade-offs than

conventional mixed-precision networks and automatic

model compression methods across different detection

frameworks and backbone architectures. SeerNet is free

of complex policy search and evaluation stage, and we

only require 0.02% search cost (0.006 GPU hours vs.

38.7 GPU hours) to marginally acquire the promis-

ing pruning and quantization policy for the Faster R-

CNN detector with ResNet18 backbone in flexible de-

ployment. Since training deep neural networks on the

largescale COCO dataset costs much more computa-

tional resources, our SeerNet saves the computational

cost of optimal compression policy acquisition more siz-

ably compared with that trained on PASVAL VOC.

5 Conclusion

In this paper, we have presented the ultrafast auto-

mated model compression framework for flexible net-

work deployment. The proposed SeerNet learns the ac-

curate performance predictor in acceptable training cost

via active compression policy evaluation, where the most

uncertain pruning and quantization strategies with in-

formative supervision are selected by efficient evolution-

ary search. Then the gradient that maximizes the pre-

dicted performance under the barrier complexity con-

straint is leveraged to differentiably search the desir-

able compression policy, where adaptive update step-

sizes with momentum are employed to strengthen the

optimality of the acquired pruning and quantization

strategies. Therefore, ultrafast automated model com-

pression is achieved without resource-exhaustive com-

pression policy search and evaluation. Extensive ex-

periments on image classification and object detection

demonstrate the superiority in efficiency and effective-

ness of the proposed method. There are two interesting
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Table 6 Comparison of BOPs(G), mAP@[.5, .95] and search cost on COCO with state-of-the-art network compression methods
in the SSD framework with VGG16 and Faster R-CNN with ResNet18. The average precision at different IoU thresholds and
that for objects in various sizes are also illustrated. The training cost of SSD and Faster R-CNN is 56.5 and 53.2 GPU hours.

Methods W/A MACs BOPs Comp. mAP AP50 AP75 APs APm APl Cost

SSD & VGG16

Baseline 32/32 27.14 27787.7 − 23.2 41.2 23.4 5.3 23.2 39.6 −
DJPQ mixed 18.39 795.98 34.91 20.1 37.9 20.6 5.3 22.3 34.7 53.6N(26)

SeerNet mixed 21.90 783.86 35.45 22.7 40.2 22.8 5.8 24.4 35.9 1350+0.005N

BP-NAS mixed 27.14 616.14 45.10 20.8 38.4 20.7 5.2 22.5 33.8 42.6N(32)

SeerNet mixed 19.03 569.89 48.76 22.1 39.9 22.6 6.0 24.0 36.1 1350+0.005N

HAQ mixed 27.14 445.67 62.35 20.1 37.5 19.9 5.2 21.3 32.6 95.3N(15)

APoT 4/4 27.14 434.18 64.00 18.1 34.4 17.5 4.5 19.1 29.4 −
SeerNet mixed 15.51 421.73 65.89 21.3 39.0 21.3 5.7 23.5 34.2 1350+0.006N

Fatser R-CNN & ResNet18

Baseline 32/32 22.01 22534.8 − 26.0 44.8 27.2 10.0 28.9 39.7 −
HAQ mixed 22.01 471.83 47.76 25.5 44.0 26.3 12.8 27.5 33.8 89.9N(14)

SeerNet mixed 19.31 458.93 49.10 26.8 45.7 28.1 13.8 29.3 35.0 1200 + 0.005N

DJPQ mixed 18.24 342.32 65.83 24.4 40.4 25.6 11.4 25.6 30.7 47.3N(26)

APoT 4/4 22.01 352.11 64.00 23.2 39.9 24.1 11.6 25.3 30.1 −
SeerNet mixed 14.25 327.59 68.79 25.5 44.4 26.3 12.6 27.9 33.8 1200 + 0.005N

HMQ mixed 22.01 301.23 74.81 24.1 42.8 24.5 12.7 26.9 30.4 55.5N(22)

BP-NAS mixed 22.01 312.38 72.14 23.6 41.9 23.9 12.7 27.6 32.0 38.7N(32)

SeerNet mixed 12.39 282.60 79.74 25.1 43.7 25.9 13.8 28.2 32.9 1200 + 0.006N

directions for the future work: (1) extending our Seer-

Net to other network architectures such as transform-

ers and graph neural networks, (2) implementing the

SeerNet method with hardware cost constraint such as

latency and energy.
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Appendix

A. Mathematical formulation from (11) to (12)

of the manuscript.

Since we leverage the deterministic neural networks to

predict the accuracy of various lightweight models, we

present the alternative objective function to tractably

calculate the objective (11) in the manuscript based on

importance sampling. We first rewrite the importance

weight in (11) of the manuscript via the analytical form

of Dirac-delta function:

p(a|s)
p(a|ŝ)

=
lim
ϵ→0

1
π

ϵ
ϵ2+(a−a10)2

lim
ϵ→0

1
π

ϵ
ϵ2+(a−a20)2

(16)

where a10 and a20 are distribution parameters of orig-

inal and perturbed policies parameterized by the per-

formance predictor. As ϵ is higher-order infinitesimal of

a−a10 and a−a20 according to the definition of Dirac-

delta function, the importance weight can be rewritten

as follows:

p(a|s)
p(a|ŝ)

=
(a− a20)

2

(a− a10)2

=
(a− a10)

2 + (a10 − a20)
2 + 2(a− a10)(a10 − a20)

(a− a10)2

Since a means the predicted accuracy parameterized by

a10, the difference between a and a10 can be assumed

as a small constant γ10 in the deterministic settings.

Therefore, the difference between a and a10 is far less

than that between a10 and a20. We obtain the following

relationship between p(a|s)
p(a|ŝ) and a10 − a20:

p(a|s)
p(a|ŝ)

= (a10 − a20)
2/γ10 ∝ (a10 − a20)

2 (17)

a10 and a20 are represented by f(s) and f(ŝ), and

the loss function l(f(s), a) of accuracy prediction is

assigned with the L2 norm of the difference between

the predicted and actual accuracy (f(si)−ai)2. There-

fore, we optimize the alternative objective (12) in the

manuscript to provide informative supervision for per-

formance predictor learning.
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Fig. 6 The actual and predicted accuracy for different compression policy across various datasets and architectures, where
random sampling and our active sampling are both evaluated. The architectures for evaluation on CIFAR-10 include VGG-
small and ResNet20, and those on ImageNet contain MobileNet-V2, ResNet18 and ResNet50. The horizontal axis represents
the predicted accuracy and the vertical axis means the actual accuracy. The mean squared errors (MSE) are also demonstrated
in the figure.

Table 7 The accuracy(%) and BOPs(G) variance for Table
1 in the manuscript by running experiments for 5 times.

Acc.(%) BOPs(G)

Reinforcement learning 91.95 ± 0.21 0.19 ± 0.01

Evolutionary algorithms 92.08 ± 0.05 0.19 ± 0.01

CPO 92.38 ± 0.17 0.20 ± 0

B. The Actual and Predicted Accuracies for Sam-

pled Lightweight Networks

We employed the architectures of VGG-small (Zhang

et al., 2018) and ResNet20 (He et al., 2016) for au-

tomated model compression on CIFAR-10, and com-

pressed MobileNet-V2 (Sandler et al., 2018), ResNet18

and ResNet50 architectures on ImageNet. We trained

the performance predictor by the accuracy of 800 ran-

domly sampled and 800 actively sampled compressed

models respectively, and regressed the accuracy for 50

randomly sampled lightweight models via the well-trained

performance predictor. We show the actual and pre-

dicted accuracy of random sampling and our active

sampling in Figure 6, where the MSE between the ac-

tual and predicted accuracy is also demonstrated. The

predicted accuracy is generally closed to the actual one

across the datasets, which shows the effectiveness of the

performance predictor for automated model compres-

sion. Meanwhile, our active sampling strategy chooses

the uncertain compression policies that provide infor-

mative supervision for performance predictor learning,

so that the predicted accuracy is more precise compared

with the random sampling strategy. Since the perfor-

mance variance for different quantization and pruning

strategies on largescale datasets is larger, and our active

sampling strategy offers more benefits for the perfor-

mance predictor learning on ImageNet. Although deeper

architectures with large search space such as MobileNet-

V2 and ResNet50 obtain higher MSE for their perfor-

mance predictors, the active sampling policy is still ca-

pable of providing informative supervision for accurate

performance predictor learning as the MSE is less than

5× 10−4.

C. Visualization of the Optimal Compression Pol-

icy

We show the bitwidth of weights and activations and

pruning ratio across different layers for image classifi-

cation in Figure 7, where the computational cost con-

straint is 2.4G and 0.2G BOPs for compressing VGG-

small and ResNet20 on CIFAR-10 and is 8G, 33G and

62G BOPs for MobileNet-V2, ResNet18 and ResNet50

compression on ImageNet respectively.

Because sparse networks require precise weights and

activations to maintain the representational capacity

and increasing the bitwidth of layers with high pruning

ratio only brings slight computational cost, the layers

with high pruning ratio are usually assigned with large

bitwidth in the optimal compression policy. The opti-

mal compression policy searched via the state-of-the-art

method DJPQ (Wang et al., 2020b) only prunes the

bottom layers since they sequentially prune the net-

works from bottom layers to top layers, while our Seer-

Net simultaneously optimizes the pruning strategy for

all layers and preserves the informative channels with

redundant channel removal.

For VGG-small and ResNet20 architectures trained

on CIFAR-10, the bitwidth varies slightly across dif-

ferent layers. Meanwhile, the pruning ratio is high and

the bitwidth is low for all layers, which means signifi-

cant over-parameterization for both network architec-
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CIFAR-10: VGG-small Bitwidth

CIFAR-10: VGG-small Pruning Ratio

CIFAR-10: ResNet20 Bitwidth

CIFAR-10: ResNet20 Pruning Ratio

ImageNet: MobileNet-V2 Bitwidth

ImageNet: MobileNet-V2 Pruning Ratio

ImageNet: ResNet18 Bitwidth

ImageNet: ResNet18 Pruning Ratio

ImageNet: ResNet50 Bitwidth

ImageNet: ResNet50 Pruning Ratio

Fig. 7 The visualization of the optimal compression policies obtained by our ultrafast SeerNet with given computational
cost constraint on image classification. We utilized VGG-small and ResNet20 architectures on CIFAR-10 and MobileNet-V2,
ResNet18 and ResNet50 networks on ImageNet.

tures on CIFAR-10. The large bitwidth and low pruning

ratio in the optimal compression policy for MobileNet-

V2 indicates that the compact architecture is hard to be

further compressed without sizable accuracy drop. On

the contrary, ResNet50 is compressed with extremely

low bitwidth, which demonstrates the significant re-

dundancy. Moreover, the bitwidth of activations is usu-

ally larger than that of weights, which depicts that the

model accuracy is more sensitive to activation quanti-

zation than weight quantization.

D. Implementation Details in Section 4.2.2

To validate the effectiveness of the presented perfor-

mance predictor, we utilized the reinforcement learning

and evolutionary algorithms to search the optimal com-

pression policy via our performance predictor. For rein-

forcement learning, we leveraged the deep deterministic

policy gradient (DDPG) (Lillicrap et al., 2015). Com-

pared with (Wang et al., 2019a), we added an extra

state pk representing the pruning ratio for the kth con-
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Table 8 The accuracy(%) and BOPs(K) variance for Table 2 in the manuscript acquired by running experiments for 5 times.

Bar. Gap.
F\M F&M A\M A&M

BOPs Top-1 BOPs Top-1 BOPs Top-1 BOPs Top-1

× × 193 ± 1 88.10 ± 0.33 186 ± 2 88.42 ± 0.25 198 ± 1 90.39 ± 0.19 196 ± 0 90.57 ± 0.23
✓ 185 ± 3 89.08 ± 0.05 192 ± 2 89.17 ± 0.10 196 ± 1 91.01 ± 0.20 198 ± 1 91.12 ± 0.35

✓
× 194 ± 0 88.29 ± 0.25 193 ± 2 88.66 ± 0.31 190 ± 3 90.72 ± 0.28 193 ± 1 90.99 ± 0.40
✓ 198 ± 1 89.22 ± 0.25 196 ± 1 89.62 ± 0.03 199 ± 1 91.07 ± 0.13 200 ± 0 92.38 ± 0.17

Table 9 The accuracy(%), MACs(K), BOPs(G) variance for
Table 3 in the manuscript acquired by running experiments
for 5 times.

Backbone MACs BOPs Acc.

VGG-small
465 ± 10 7.37 ± 0.03 92.95 ± 0.10
332 ± 12 3.85 ± 0.10 92.69 ± 0.26
231 ± 9 2.29 ± 0.07 92.54 ± 0.18

ResNet20
38 ± 1 0.63 ± 0.02 92.58 ± 0.35
31 ± 2 0.36 ± 0.02 92.35 ± 0.24
37 ± 2 0.20 ± 0 92.38 ± 0.17

Table 10 The top-1 accuracy(%), MACs(G), BOPs(G) vari-
ance for Table 4 in the manuscript acquired by running ex-
periments for 5 times.

Backbone MACs BOPs Top-1

MobileNet-V2
0.27 ± 0.05 10.93 ± 0.05 71.22 ± 0.27
0.22 ± 0 7.67 ± 0.05 70.78 ± 0.07

0.20 ± 0.01 4.90 ± 0.02 70.38 ± 0.19

ResNet18
1.35 ± 0.08 55.98 ± 0.99 69.65 ± 0.19
1.25 ± 0.06 31.28 ± 0.79 69.15 ± 0.14
0.68 ± 0.07 7.40 ± 0.39 67.52 ± 0.27

ResNet50
3.25 ± 0.17 92.38 ± 0.21 76.50 ± 0.30
3.03 ± 0.07 60.06 ± 0.20 76.28 ± 0.28
2.10 ± 0.10 31.19 ± 0.52 75.95 ± 0.12

Table 11 The mAP(%), MACs(G), BOPs(G) variance for
Table 5 in the manuscript acquired by running experiments
for 5 times.

Backbone MACs BOPs mAP

VGG16
18.08 ± 0.23 772.12 ± 5.33 69.5 ± 0.2
14.93 ± 0.45 629.78 ± 10.33 68.7 ± 0.3
14.01 ± 0.69 440.15 ± 3.78 66.9 ± 0.3

ResNet18
19.00 ± 0.15 542.17 ± 7.90 72.9 ± 0.2
14.89 ± 0.22 338.13 ± 6.89 72.1 ± 0.2
13.03 ± 0.46 295.29 ± 12.23 71.2 ± 0.7

volutional layer in the state space and supplemented

an extra action apk to sample the pruning ratio of com-

pression strategy in the action space. The accuracy of

the compressed model applied in the reward function

was obtained via our performance predictor. Other im-

plementation details were the same as those in Wang

et al. (2019a). For evolutionary algorithms, we followed

the same implementation details in Wang et al. (2020a)

to search the optimal compression policy except that we

deleted the network architecture components for each

candidate. The accuracy of each candidate applied in

the fitness function was acquired via our performance

predictor. We imposed the resource constraint by lim-

iting the BOPs of the compressed models during the

search process.

E. Performance Variance of SeerNet

In order to show the performance variance of our Seer-

Net, we run SeerNet for 5 times including compression

Table 12 The mAP(%), MACs(G), BOPs(G) variance for
Table 6 in the manuscript acquired by running experiments
for 5 times.

Backbone MACs BOPs mAP

VGG16
20.92 ± 0.86 797.16 ± 8.27 22.6 ± 0.1
19.52 ± 0.59 558.18 ± 7.10 22.2 ± 0.3
15.59 ± 0.19 425.10 ± 2.23 21.3 ± 0

ResNet18
19.99 ± 0.15 482.35 ± 16.72 26.8 ± 0.1
14.29 ± 0.11 318.90 ± 8.72 25.3 ± 0.3
12.69 ± 0.39 289.75 ± 4.50 25.1 ± 0

Table 13 The MACs(G), BOPs(G), top-1 classification ac-
curacy and search cost on ImageNet with pruning-only meth-
ods in MobileNet-V2. The search cost is demonstrated by
GPU hours, where N means the number of deployment sce-
narios. The number in the bracket of search cost for mixed-
precision quantization demonstrates the break-even point of
baseline methods whose search cost is higher than our Seer-
Net.

Methods MACs BOPs Comp. Top-1 Cost

Baseline 0.33 337.9 − 71.72 −
AMC 0.23 236.5 1.43 70.90 62.3N(13)

NetAdapt 0.22 225.3 1.50 70.80 95.6N(8)
MetaPruning 0.22 222.2 1.52 71.20 900+0.31N(1)

SeerNet 0.22 227.6 1.48 71.52 750+0.002N

Table 14 The MACs(G), BOPs(G), top-1 classification ac-
curacy and search cost on ImageNet with quantization-only
methods in MobileNet-V2, ResNet18 and ResNet50.

Backbone Methods MACs BOPs Top-1 Cost

MobileNet-V2
Baseline 0.33 337.9 71.72 −
HAQ 0.33 8.25 69.45 51.1N(15)

SeerNet 0.33 8.08 70.64 750+0.003N

ResNet18
Baseline 1.81 1853.4 69.74 −
HAWQ 1.81 34.00 68.45 22.7N(23)
SeerNet 1.81 33.16 69.38 500+0.002N

ResNet50
Baseline 3.86 3952.6 76.40 −
HAWQ 3.86 61.29 75.48 34.5N(28)
SeerNet 3.86 58.49 76.25 950+0.003N

policy search and backbone training for results in Table

1-6. We report the mean and standard deviation of ac-

curacies and computational complexity due to the vari-

ation, while the search cost and training cost are almost

the same for each time. We leveraged the same complex-

ity budget as that in Table 1-6 of the manuscript, and

Table 7-12 show the experimental results with mean

and standard deviation.

F. Performance of Pruning-only and Quantization-

only Strategies

In this section, we evaluate SeerNet in the experimen-

tal settings with pruning-only and quantization-only

strategies, where the backbone networks are only com-

pressed by pruning and quantization policies in the
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Fig. 8 Several examples w.r.t. the compression policy com-
plexity during the optimization with different policy initial-
izations, where no optimization paths stop early because of
exceeding the computational cost budget. Different colors
represent various initializations, where the BOPs constraint
is 30G.

above settings respectively. We implemented SeerNet

following the details introduced in Section 4.1 of the

manuscript except for the modifications that the com-

pression policy sampling for performance predictor train-

ing only contains pruning or quantization for the two

settings. The compared methods include AMC (He et al.,

2018b), NetAdapt (Yang et al., 2018), MetaPruning

(Liu et al., 2019) for pruning-only methods and con-

tain HAQ (Wang et al., 2019a) and HAWQ (Dong et al.,

2019) for quantization-only methods. For pruning-only

strategies, since only one shared experimental setting

exists in AMC, NetAdapt and MetaPruning which em-

ploys MobileNet-V2 with 0.22G MACs for evaluation,

we also assign the similar complexity constraint for fair

comparison. For quantization-only strategies, we com-

pare SeerNet with HAQ and HAWQ with MobileNet-

V2, ResNet18 and ResNet50. Table 13 and 14 illus-

trate the results for pruning-only and quantization-only

strategies respectively, where our SeerNet still outper-

forms the baseline methods by a sizable margin with

much less marginal search cost.

G. Visualization of Policy Optimization

The presented barrier complexity loss in the compres-

sion policy optimization is amplified significantly for

model complexity approaching the cost budget, which

strictly limits the acquired pruning and quantization

strategies within the complexity constraint. The com-

plexity of the pruning and quantization policy in the

optimization path usually keeps a margin from the com-

Table 15 The BOPs(G), top-1 classification accuracy and
search cost on ImageNet with random search baseline and
our SeerNet in ResNet18.

Methods W/A MACs BOPs Comp. Top-1 Cost

ResNet18

Baseline 32/32 1.81 1853.4 − 69.74 −
RS mixed 1.35 53.51 34.64 66.83 62.1N(9)

SeerNet mixed 1.37 56.94 32.55 69.72 500+0.003N

RS mixed 1.18 28.75 54.51 67.00 62.1N(9)

SeerNet mixed 1.22 31.84 58.21 69.48 500+0.004N

RS mixed 0.69 6.89 267.00 65.72 62.1N(9)

SeerNet mixed 0.70 7.19 257.71 67.84 500+0.004N

putational cost budget. In order to empirically demon-

strate the effectiveness of the barrier complexity loss,

we implemented compression policy search for 50 times

with different initialization, and the compression poli-

cies with complexity higher than the budget were never

observed during the compression policy optimization.

Figure 8 shows several examples w.r.t. the compression

policy complexity during the optimization with differ-

ent policy initializations, where no optimization paths

stop early because of exceeding the computational cost

budget.

H. Comparison with The Random Selection Base-

line Method

To show the effectiveness of our search method, we con-

ducted experiments to compare our SeerNet with ran-

dom selection baseline method (RS) with ResNet18 on

ImageNet. The pipeline of RS is demonstrated as fol-

lows: (a) randomly sampling k compression policies that

satisfy the BOPs constraint, (b) exhaustively evaluat-

ing the acquired lightweight architectures, (c) select-

ing the one with the highest accuracy. With the same

complexity constraint in Table 4 of the manuscript, we

randomly sample 5 compression strategies that satisfy

the BOPs budget for each random selection. Table 15

demonstrates the results, where the BOPs of RS is far

from the budget and underperforms our SeerNet by a

large margin regarding the accuracy.
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