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Abstract In this paper, we propose a generalizable

mixed-precision quantization (GMPQ) method for effi-

cient inference. Conventional methods require the con-

sistency of datasets for bitwidth search and model de-

ployment to guarantee the policy optimality, leading

to heavy search cost on challenging large-scale datasets

in realistic applications. On the contrary, our GMPQ

searches the mixed-quantization policy that can be gen-

eralized to large-scale datasets with only a small amount

of data, so that the search cost is significantly reduced

without performance degradation. Specifically, we ob-

serve that locating network attribution correctly is gen-

eral ability for accurate visual analysis across differ-

ent data distribution. Therefore, despite of pursuing

higher accuracy and lower model complexity, we pre-

serve attribution rank consistency between the quan-
tized models and their full-precision counterparts via

capacity-aware attribution imitation (CAI) for gener-

alizable mixed-precision quantization strategy search,

where the capacity of quantized networks is considered

to fully utilize the network capacity without insuffi-

ciency. Since slight noise in attribution is amplified by

discrete ranking operations with significant rank errors,

mimicking the attribution ranks of the full-precision
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models obstructs the quantized networks to correctly lo-

cate the attribution. To address this, we further present

a robust generalizable mixed-precision quantization (R-

GMPQ) method to smooth the attribution for rank

error alleviation by hierarchical attribution partition-

ing, which efficiently partitions the attribution pixels in

high spatial resolution and assigns the same attribution

value for pixels within a group. Moreover, we propose

dynamic capacity-aware attribution imitation (DCAI)

to adjust the concentration degree of the attribution

according to sample hardness, so that sufficient model

capacity is achieved with full utilization for each im-

age. Extensive experiments on image classification and

object detection show that our GMPQ and R-GMPQ

obtain competitive accuracy-complexity trade-offs with

significantly reduced search cost compared to the state-

of-the-art mixed-precision networks.

Keywords Mixed-precision quantization · Gen-

eralizable compression policy · Attribution rank

preservation · Attribution imitation · Hierarchical

attribution partitioning

1 Introduction

Deep neural networks have achieved the state-of-the-art

performance across a large number of vision tasks such

as image classification (He et al., 2016; Huang et al.,

2017; Simonyan and Zisserman, 2014), object detection

(He et al., 2017a; Liu et al., 2016; Ren et al., 2015), face

recognition (Deng et al., 2019; Liu et al., 2017; Wang

et al., 2018) and many others. However, the mobile de-

vices with limited storage and computational resources

are not capable of processing deep models due to the

extremely high complexity. Therefore, it is desirable to
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Fig. 1 (a) The difference between conventional mixed-
precision networks and our GMPQ. Conventional methods
require the consistency of datasets for bitwidth search and
model deployment, while our GMPQ searches the optimal
quantization policy on small datasets and generalizes it to
large-scale datasets. Therefore, the search cost is significantly
reduced in our GMPQ. (b) The attribution computed by
Grad-cam for full-precision, randomly and optimally quan-
tized networks for example images from ImageNet (top row)
and PASCAL VOC (bottom row). Different from random
quantization, the optimal quantization policy keeps the sim-
ilar attribution rank with the full-precision counterparts re-
gardless of the datasets.

design network compression strategy according to the

hardware configurations.

Recently, several network compression techniques

have been proposed including pruning (He et al., 2017b;

Lin et al., 2017; Molchanov et al., 2019), quantization

(Liu et al., 2018; Wang et al., 2020a; Zhao et al., 2019),

efficient architecture design (Howard et al., 2017; Ian-

dola et al., 2016; Qin et al., 2019) and low-rank de-

composition (Denton et al., 2014; Li et al., 2020a; Yu

et al., 2017). Among these approaches, quantization

constrains the network weights and activations in lim-

ited bitwidth for memory saving and fast processing.

In order to fully utilize the hardware resources, mixed-

precision quantization (Cai and Vasconcelos, 2020; Dong

et al., 2019c; Wang et al., 2019a) is presented to search

the bitwidth in each layer so that the optimal accuracy-

complexity trade-off is obtained. However, conventional

mixed-precision quantization requires the consistency

of datasets for bitwidth search and network deploy-

ment to guarantee policy optimality, which causes sig-

nificant search burden for automated model compres-

sion on large-scale datasets such as ImageNet (Deng

et al., 2009). For example, it usually takes several GPU

days to acquire the expected quantization strategy for

ResNet18 on ImageNet (Cai and Vasconcelos, 2020; Wang

et al., 2019a).

In this paper, we present a GMPQ method to learn

generalizable mixed-precision quantization strategy via

attribution rank preservation for efficient inference. Un-

like existing methods which require the dataset con-

sistency between quantization policy search and model

deployment, our method enables the acquired quantiza-

tion strategy to be generalizable across various datasets.

The quantization policy searched on small datasets a-

chieves promising performance on largescale datasets,

so that policy search cost is significantly reduced. Fig-

ure 1(a) shows the difference between our GMPQ and

conventional mixed-precision networks. More specifically,

we observe that correctly locating the network attribu-

tion benefits visual analysis for various input data dis-

tribution. Attribution has been proven to be effective

in computer vision and machine learning with trans-

ferability requirements (Gao et al., 2023; Wang et al.,

2021; Zunino et al., 2021), where feature attribution

from different well-performed networks is very similar

for the same input instance regardless of the data dis-

tribution. Inspired by this, we also observe that the

feature attribution acquired in full-precision networks

and quantized ones with the optimal policy is very sim-

ilar, as depicted in Figure 1(b) and Table 1 respectively.

Figure 1(b) demonstrates the attribution computed by

Grad-cam (Selvaraju et al., 2017) for mixed-precision

networks with optimal and random quantization policy

and their full-precision counterparts, where the optimal

quantization policy is acquired by the mixed-precision

quantization search method EdMIPS (Cai and Vascon-

celos, 2020) performed on corresponding datasets. Ta-

ble 1 demonstrates the attribution rank difference (ARD)

between attribution in the quantized and full-precision

networks. The mixed-precision networks with the op-

timal bitwidth assignment acquire more consistent at-

tribution rank with the full-precision model regardless

of data distribution, which also indicates high general-

ization ability across different distribution. Therefore,

despite of considering model accuracy and complexity,
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Table 1 The average attribution rank difference across all
test images for different quantization policies.

ImageNet VOC COCO
Optimal 10.03 15.78 28.99
Random 39.94 40.07 78.95

we enforce the quantized networks to imitate the at-

tribution of the full-precision counterparts. Instead of

directly minimizing the Euclidean distance between at-

tribution of quantized and full-precision models, we pre-

serve their attribution rank consistency so that the at-

tribution of quantized networks can adaptively adjust

the distribution without model capacity insufficiency.

Moreover, we also present capacity-aware attribution

imitation (CAI) for efficient optimization of attribu-

tion rank consistency preservation, where we enforce

the attribution in quantized networks to mimic that in

full-precision counterparts with adaptive concentration

degree decided by the network capacity.

In fact, the attribution ranks in full-precision net-

works usually contain errors because slight attribution

noise can be significantly amplified by ranking opera-

tions, which fails to reveal the true region importance.

Figure 2(a) shows an example of rank errors in attri-

bution ranks. Since GMPQ enforces the quantized net-

works to mimic the attribution rank of full-precision

counterparts, the rank errors in ranks hinder the quan-

tized networks to correctly locate the attribution. In

order to address these limitations, we further propose a

robust generalizable mixed-precision quantization (R-

GMPQ) method to smooth the attribution for noise al-

leviation by hierarchical attribution partitioning. More

specifically, we hierarchically partition attribution ac-
cording to semantic similarity of pixels in feature maps,

where the pixel groups are decided in different spa-

tial resolution. Following that, we smooth the attri-

bution by the statistics of different partitions. Figure

1(b) demonstrates the difference between GMPQ and

R-GMPQ. Meanwhile, the capacity-aware attribution

imitation (CAI) assigns the same concentration degree

of attribution for samples in various hardness, which

fails to fully utilize the model capacity for easy images

and causes capacity insufficiency for hard samples. We

present dynamic capacity-aware attribution imitation

(DCAI) to adjust the attribution distribution adap-

tively according to sample hardness that is evaluated

by the task risk changes during model quantization,

so that sufficient model capacity is acquired with full

utilization for each input. Compared with the state-of-

the-art mixed-precision quantization methods, exten-

sive experiments show that our GMPQ and R-GMPQ

obtain competitive accuracy-complexity trade-off with

significantly reduced search cost on ImageNet (Deng
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Fig. 2 (a) The attribution rank errors. The attribution noise
is negligible in the selected area, which is significantly ampli-
fied by ranking operations. (b) The difference between GMPQ
and R-GMPQ. GMPQ directly enforces the quantized neural
networks to preserve the attribution rank consistency with
full-precision counterparts, so that the quantized model fails
to locate the attribution correctly due to the attribution rank
errors in full-precision networks. R-GMPQ hierarchically par-
titions the attribution, and smooths the attribution with par-
tition statistics for rank error alleviation.

et al., 2009) for image classification and on PASCAL

VOC (Everingham et al., 2010) and COCO (Lin et al.,

2014) for object detection.

This paper is an extended version of our conference

paper, we make the following new contributions:

1. We propose a new R-GMPQmethod based on GMPQ

by smoothing the attribution with hierarchical attri-

bution partitioning, so that the attribution rank er-

rors are alleviated for generalizable mixed-precision

quantization policy search.

2. We present dynamic capacity-aware attribution im-

itation to select the optimal attribution concentra-

tion degree adaptively according to sample hard-

ness, so that sufficient model capacity is acquired

with full utilization for each image.

3. We conducted extensive experiments on image clas-

sification and object detection, and the results demon-

strate the effectiveness and efficiency of the pre-

sented methods.
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2 Related Work

In this section, we briefly review three related topics:

1) fixed-point quantization, 2) mixed-precision quanti-

zation and 3) attribution methods.

2.1 Fixed-point Quantization

Network quantization has aroused extensive interests

in computer vision and machine learning due to the

significant reduction in computation and storage com-

plexity, and existing methods are divided into one-bit

and multi-bit quantization. Binary networks constrain

the network weights and activations in one bit at ex-

tremely high compression ratio. Hubara et al. (Hubara

et al., 2016) and Courbariaux et al. (Courbariaux et al.,

2016) replaced the multiply-add operations with xnor-

bitcount via weight and activation binarization, and

applied the straight-through estimators (STE) to dif-

ferentiably optimize network parameters. Rastegari et

al. (Rastegari et al., 2016) leveraged the scaling factor

for weight and activation binarization to minimize the

quantization errors. Liu et al. (Liu et al., 2018) added

extra shortcut between consecutive convolutional layers

to enhance the network capacity, they also presented

the multinomial approximation of the sign function for

accurate optimization. Wang et al. (Wang et al., 2019c)

mined the channel-wise interactions to eliminate incon-

sistent signs in feature maps. Qin et al. (Qin et al.,

2020) minimized the parameter entropy in inference

and utilized the soft quantization in backward prop-

agation to enhance the information retention. Since the

performance gap between full-precision and binary net-

works is huge, multi-bit networks are presented for bet-

ter accuracy-efficiency trade-off. Zhu (Zhu et al., 2016)

trained an adaptive quantizer for network ternariza-

tion according to weight distribution. Gong et al. (Gong

et al., 2019) applied the differentiable approximations

for quantized networks to ensure the consistency be-

tween the gradient and the objective. Li et al. (Li et al.,

2019) proposed the four-bit networks for object detec-

tion with hardware-friendly implementations, and over-

come the training instabilities by custom batch normal-

ization and outlier removal. However, the fixed-precision

quantization ignores the redundancy variance across

different layers and leads to suboptimal trade-off be-

tween accuracy and complexity in quantized networks.

2.2 Mixed-precision Quantization

The mixed-precision networks assign different bitwidths

to weights and activations in various layers, which con-

siders the redundancy variance in different components

to obtain the optimal accuracy-complexity trade-off given

hardware configurations. Existing mixed-precision quan-

tization methods are mainly based on non-differentiable

or differentiable search. For the former, Wang et al.

(Wang et al., 2019a) presented a reinforcement learn-

ing model to learn the optimal bitwidth for weights

and activations of each layer, where the model accu-

racy and complexity were considered in reward func-

tion. Wang et al. (Wang et al., 2020b) jointly searched

the pruning ratio, the bitwidth and the architecture of

the lightweight model from a hypernet via the evolu-

tionary algorithms. Since the non-differentiable meth-

ods require huge search cost to obtain the optimal bit-

widths, the differentiable search approaches are also

introduced in mixed-precision quantization. Cai et al.

(Cai and Vasconcelos, 2020) designed a hypernet where

each convolutional layer consisted of parallel blocks in

different bitwidths, and yielded the output by sum-

ming all blocks in various weights. Optimizing the block

weight by back propagation and selecting the bitwidth

with the largest value during inference achieved the op-

timal accuracy-complexity trade-off. Moreover, Yu et

al. (Yu et al., 2020) further presented a barrier penalty

to ensure that the searched models were within the com-

plexity constraint. Yang et al. (Yang et al., 2020) de-

coupled the constrained optimization via Alternating

Direction Method of Multipliers (ADMM), and Wang

et al. (Wang et al., 2020c) utilized the variational in-

formation bottleneck to search the proper bitwidth and

pruning ratio. Habi et al. (Habi et al., 2020) and Van

et al. (van Baalen et al., 2020) directly optimized the

quantization intervals for bitwidth selection of mixed-

precision networks. However, differentiable search for

mixed-precision quantization still needs a large amount

of time due to the optimization of the large hyper-

net. In order to solve this, Dong et al. (Dong et al.,

2019c), (Dong et al., 2019b) designed bitwidth assign-

ment rules according to Hessian information. Neverthe-

less, the hand-crafted rules require expert knowledge

and cannot adapt to the input data.

2.3 Attribution Methods

Attribution aims to produce human-understandable ex-

planations for the predictions of neural networks. The

contribution of each input component is calculated by

examining its influence on the network output, which is

displayed as the attribution in 2D feature maps. Early

works (Erhan et al., 2009), (Simonyan et al., 2013),

(Zhou et al., 2016) analyzed the sensitivity and the sig-

nificance of each pixel by leveraging its gradients with

respect to the objective optimization. Recent studies
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on attribution extraction can be categorized into two

types: gradient-based and relevance-based methods. For

the first regard, Guided Backprop (Springenberg et al.,

2014), Grad-Cam (Selvaraju et al., 2017) and integrated

gradient (Sundararajan et al., 2017) combined the pixel

gradients across different locations and channels for in-

formation fusion, so that more accurate attribution was

obtained. Smoothgrad (Springenberg et al., 2014) pro-

posed to smooth the derivatives of the class activation

to eliminate the local fluctuation in sensitivity maps.

For the latter regard, Zhang et al. (Zhang et al., 2018)

constructed a hierarchical probabilistic model to mine

the correlation between the input components and the

prediction. Moreover, attribution was applied to en-

hance the generalizability in other computer vision tasks

such as adversarial attack generation (Dong et al., 2019a).

In this paper, we observe that the attribution rank

consistency of feature maps between vanilla and com-

pressed networks benefits downstream tasks for various

data distribution, which is extended to generalizable

mixed-precision quantization for significant search cost

reduction.

3 Generalizable Mixed-Precision Quantization

In this section, we first introduce the mixed-precision

quantization framework which suffers from significant

search burden. Then we demonstrate the observation

that the attribution rank consistency between quan-

tized and full-precision models benefits visual analysis

for various data distribution. Finally, we present the

generalizable mixed-precision quantization via attribu-

tion rank preservation.

3.1 Preliminaries for Mixed-Precision Quantization

The goal of mixed-precision quantization is to search

the proper bitwidth of each layer in order to achieve

the optimal accuracy-complexity trade-off given hard-

ware configurations. Since the distribution of the train-

ing and validation data for policy search significantly af-

fects the acquired quantization strategy, existing meth-

ods require the training and validation data for quanti-

zation policy search and those for model deployment to

come from the same dataset. However, the compressed

models are usually utilized on large-scale datasets such

as ImageNet, which causes heavy computational bur-

den during quantization policy search. To address this,

an ideal solution is to search for the quantization policy

whose optimality is independent of the data distribu-

tion. Let W be the quantized network weight and Q be

the quantization policy that assigns different bitwidths

Fig. 3 The attribution of the mixed-precision networks in
different BOPs with the optimal quantization policy. For the
networks in low BOPs, the attribution is more concentrated
although the rank remains similar. The concentrated attri-
bution enables the model capacity to be sufficient by redun-
dant attention removal, so that the promising performance is
achieved.

to weights and activations in various layers.Ω(Q) means

the computational complexity of the compressed net-

works with the quantization policy Q. The search ob-

jective should be formulated in the following form:

min
Q

Ex∼Dval
L(W ∗(Q),Q,x)

s.t. W ∗(Q) = argminEx∼Dtrain L(W ,Q,x)

Ω(Q) ⩽ Ω0 (1)

where L(W ,Q,x) represents the task loss for network

weightW , quantization policyQ and input x.Ω0 stands

for the resource constraint of the deployment platform.

In order to obtain the optimal mixed-precision net-

works, the quantization policyQ and the network weights

W (Q) are alternatively optimized until convergence or

the maximal iteration number. Dval depicts the dataset

containing all validation images in deployment andDtrain

illustrates the dataset including given training images

in bitwidth search, where the distribution gap between

Dval and Dtrain may be sizable. Because Dval is in-

tractable in realistic applications, it is desirable to find

an alternative way to solve for the generalizable mixed-

precision quantization policy.

3.2 Attribution Rank Consistency

Since acquiring all validation images in deployment is

impossible, we solve the generalizable mixed-precision

quantization policy via an alternative way. We observe

that correctly locating the network attribution benefits

visual analysis for various input data distribution. The
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Fig. 4 The pipeline of our GMPQ. The hypernet consists of multiple parallel branches including filters and activations in
different bitwidths. The output from various branches is added with learnable importance weights to construct output feature
maps. Despite of the cross-entropy and complexity loss, we present additional generalization loss to optimize the network
weights and branch importance weights, which enables the quantization policy searched on small datasets to be generalized on
large-scale datasets. When the hypernet converges or achieves the maximum training epoch, we select the bitwidth represented
by the branch with the largest importance weight to be the final quantization policy for finetuning.

feature attribution is formulated according to the loss

gradient with respect to feature maps in the last layer,

where the importance of the cth feature map in the last

convolutional layer for recognizing the objects from the

tth class is written as follows:

αc[t] =
1

Z

∑
m,n

∂f(x)[t]

∂Ac[m,n]
(2)

where f(x)[t] means the output score for input x of the

tth class, and Ac[m,n] represents the activation element

in themth row and nth column of the cth feature map in

the last convolutional layer. Z is a scaling factor that

normalizes the importance into the range [0, 1]. With

the feature map visualization techniques presented in

Grad-cam (Selvaraju et al., 2017), we obtain the feature

attribution in the networks. We sum the feature maps

from different channels with the attention weight cal-

culated in (2), and remove the influence from opposite

pixels via the ReLU operation. The feature attribution

in the last convolutional layer with respect to the tth
class is formulated in the following:

M [t] = ReLU(
∑
c

αc[t] ·Ac) (3)

The feature attribution only preserves the supportive

features for the given class, and the negative features

related to other classes are removed. Meanwhile, the at-

tribution is upsampled with the size of input images by

bilinear interpolation (Selvaraju et al., 2017) in order to

keep the resolution consistency. Preserving attribution

similarity have been proven to be meta knowledge that

can be transferred among different data distribution

in many tasks including adversarial attack Dong et al.

(2019a); Wang et al. (2021); Wu et al. (2020) and do-

main adaptation Gao et al. (2023); Wang et al. (2019b);

Zunino et al. (2021), and extensive experiments have

also verified that they can enhance the model perfor-

mance on novel data. Please refer to Appendix J for

more detailed formulation. Therefore, we expect similar

attribution between quantized and full-precision mod-

els to enhance the generalization ability of the searched

quantization policies.

The full-precision networks achieve high performance

due to paying more attention to important parts in the

image, while the quantized models deviate the attri-
bution from that of the full-precision networks due to

the limited capacity. Figure 3 demonstrates the attri-

bution of networks with the optimal quantization pol-

icy in different complexity, where attribution of net-

works in lower capacity is more concentrated due to

the limited carried information. As the network capac-

ity gap between the quantized networks and their full-

precision counterparts is huge, directly enforcing the

attribution consistency fails to remove the redundant

attention in the compressed model, which causes capac-

ity insufficiency with performance degradation. There-

fore, we preserve the attribution rank consistency be-

tween the quantized networks and their full-precision

counterparts for generalizable mixed-precision quanti-

zation policy search. The attribution rank illustrates

the importance order of different pixels for model pre-

dictions. Constraining attribution rank consistency en-

ables the quantized networks to focus on important re-

gions, which adaptively adjusts the attribution distri-

bution without capacity insufficiency.
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3.3 Generalizable Mixed-Precision Quantization via

Attribution Rank Preservation

Our GMPQ can be leveraged as a plug-and-play mod-

ule for both non-differentiable and differentiable search

methods. Since differentiable methods achieve the com-

petitive accuracy-complexity trade-off compared with

non-differentiable approaches, we employ the differen-

tiable search framework (Cai and Vasconcelos, 2020;

Yang et al., 2020; Yu et al., 2020) to select the opti-

mal mixed-precision quantization policy. We design a

hypernet with Nk
a and Nk

w parallel branches for con-

volution filters and feature maps in the kth layer. Nk
a

and Nk
w represent the size of the search space for weight

and activation bitwidths. The parallel branches are as-

signed with various bitwidths whose output is summed

with the configuration parameters for weight and ac-

tivation respectively to form the intermediate feature

maps. Figure 4 depicts the pipeline of our GMPQ. The

feed-forward propagation for each layer in the K-layer

hypernet is written as follows:

zk =

Nk
w∑

i=1

πk
w,iw

k
i (

Nk
a∑

j=1

πk
a,ja

k
j )

s.t.

Nk
w∑

i=1

πk
w,i = 1,

Nk
a∑

i=1

πk
a,i = 1, πk

w,i, π
k
a,i ∈ [0, 1], (4)

where zk means the output intermediate feature maps

of the kth layer. ak
j represents the output of the jth

activation quantization branch in the kth layer, and wk
i

is the ith convolution filter of the kth layer. πk
a,i and

πk
w,i stand for the configuration parameters for the ith

quantized activation and filter branch in the kth layer,

which are normalized in the following way:

πk
w,i = π̃k

w,i/

Nk
w∑

i=1

π̃k
w,i, πk

a,i = π̃k
a,i/

Nk
a∑

i=1

π̃k
a,i (5)

where π̃k
w,i and π̃k

a,i mean the learnable coefficients be-

fore normalization, and are optimized by the gradients

of the hypernet.

As we observe that the attribution rank consistency

between quantized networks and their full-precision coun-

terparts enables the compressed models to possess the

discriminative power of the vanilla model regardless of

the data distribution, we impose the attribution rank

consistency constraint in optimal quantization policy

search despite of the accuracy and efficiency objective.

In order to obtain the optimal accuracy-complexity trade-

off for generalizable mixed-precision quantization, the

learning objective is formulated in the Lagrangian form:

R = RE(W ,Q,x) + ζRC(Q) + ηRG(W ,Q,x) (6)

p=1 p=2 p=4

Fig. 5 The Lp norm of the attribution for the full-precision
networks with different p. The attribution is more concen-
trated for larger p while the rank keeps same.

where RE(W ,Q,x), RC(Q) and RG(W ,Q,x) respec-

tively mean the task, complexity and the generalization

risk for the networks with weight W and quantization

policy Q for the input x. ζ and η are the hyperparam-

eters to balance the importance of the complexity risk

and generalization risk in the overall learning objective.

In differentiable policy search, RE(W ,Q,x) is repre-

sented by the objective of vision tasks, and RC(Q) is

defined as the expected Bit-operations (BOPs) (Bethge

et al., 2020; Cai and Vasconcelos, 2020; Wang et al.,

2020c):

RC(Q) =

K∑
k=1

(

Nk
w∑

i=1

πk
w,iq

k
w,i) · (

Nk
a∑

i=1

πk
a,iq

k
a,i) ·Bk

full (7)

where qkw,i and qka,i stand for the bitwidth of the ith
branch of weights and activations in the kth layer, and

Bk
full means the BOPs of the kth layer in the full-

precision network. K represents the number of layers

of the quantized model. As the attribution rank con-

sistency between the full-precision networks and their

quantized counterparts enhances the generalizability of

the mixed-precision quantization policy, we define the

generalization risk in the following form:

RG =
∑
i,j

||r(Mq,ij [yx])− r(Mf,ij [yx])||22 (8)

where Mq,ij [yx] represents the pixel attribution in the

ith row and jth column of the input images with re-

spect to the class yx in the quantized networks, and

Mf,ij [yx] demonstrates the corresponding variable in

full-precision models. yx means the label of the input

x, and || · ||2 is the element-wise l2 norm. r(·) stands for
the attribution rank, which equals to k if the element is

the kth largest in the attribution map. We only preserve
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the attribution rank consistency for top-k pixels with

the highest attribution in the full-precision networks, as

low attribution is usually caused by noise without clear

information. Since minimizing the generalization risk

is NP-hard, we present the capacity-aware attribution

imitation to differentiably optimize the objective.

To benefit the objective optimization process, we

normalized the original attribution score acquired from

Grad-cam by dividing summation over all pixel values.

We enforce attribution of the mixed-precision networks

to approach the lp norm of that in full-precision mod-

els, because the lp norm preserves the rank consistency

while adaptively selects the attribution distribution ac-

cording to the network capacity. The generalization risk

is rewritten as follows for efficient optimization:

RG =
∑
i,j

||Mq,ij [yx]−
Mf,ij [yx]

p∑
i,j Mf,ij [yx]p

||22 (9)

Large p leads to concentrated attribution and vice versa,

as shown in Figure 5. Excessively large p enforces quan-

tized models to focus on small regions that fail to fully

utilize the capacity, and extremely small p leads to pay-

ing attention to large area with capacity insufficiency.

Therefore, we adjust the attribution concentration ac-

cording to the network capacity with hyperparameters

Q0
w and Q0

a for L-layer networks, where quantized net-

works in low bitwidths can select more concentrated

attribution and vice versa:

p =
1

L

L∑
k=1

(Q0
w/

Nk
w∑

i=1

πk
w,iq

k
w,i) · (Q0

a/

Nk
a∑

i=1

πk
a,iq

k
a,i) (10)

Since the task, complexity and generalization risks are

all differentiable, we optimize the hypernet weights and

the branch importance weights iteratively in an end-to-

end manner. When the hypernet converges or achieves

the maximum training epoch, the bitwidth represented

by the branch with the largest important weight is se-

lected to form the final quantization policy. We finetune

the quantized networks with the data in deployment to

acquire the final model applied in realistic applications.

GMPQ searches quantization policies on small datasets

with generalization constraint, which leads to high per-

formance on large-scale datasets in deployment with

reduced search cost.

4 Robust Generalizable Mixed-Precision

Quantization

We first propose hierarchical partitioning based attribu-

tion smoothing, and then present the dynamic capacity-

aware attribution imitation to optimally adjust the at-

tribution distribution according to the sample hardness

for each input.

Before updating

Attribution pixel 
merger

Activation pixel 
comparison

After updating

𝑚𝑖1𝑗1 

𝑚𝑖2𝑗2 𝑚𝑖2𝑗2 

𝑚𝑖1𝑗1 

𝒂𝑖2𝑗2 

𝒂𝑖2𝑗2 𝒂𝑖2𝑗2 

𝒂𝑖1𝑗1 

𝒂𝑖1𝑗1 𝒂𝑖1𝑗1 

Fig. 6 The attribution partition process, where different col-
ors in attribution maps represent various partitions. The at-
tribution pixels mi1j1

and mi2j2
are defined to be semanti-

cally similar if the distance between their counterparts ai1j1

and ai2j2
in activation maps is no more than the threshold,

and the partitions they belong to are merged with the same
index assignment (the top row). Therefore, pixels in both par-
titions are merged into one partition (the bottom row).

4.1 Attribution Smoothing via Hierarchical

Partitioning

The attribution ranks in full-precision models usually

contain significant errors because slight attribution noise

is amplified by ranking operations, which fails to reveal

the true region importance. While GMPQ enforces the

quantized networks to mimic attribution ranks of the

full-precision counterparts for each pixel, the attribu-

tion rank errors in full-precision networks hinder the

quantized models to correctly locate the attribution. In

order to address these limitations, we propose robust

generalizable mixed-precision quantization (R-GMPQ)

to eliminate attribution rank errors, where attribution

in full-precision models is smoothed via hierarchical

partitioning.

Attribution pixels sharing similar semantics should

be assigned with the same attribution rank, where the

semantic similarity can be evaluated by the pixel dis-

tance of activation maps in the last layer (Park et al.,

2020; Zagoruyko and Komodakis, 2016). As attribution

is upsampled with the size of input images, the activa-

tion maps are also re-scaled to the same resolution for

semantic similarity measurement by bilinear interpo-

lation. In order to correctly locate the region impor-

tance without significant rank errors, we assign attri-

bution pixels sharing similar semantics with the same

rank. Inspired by techniques presented in feature de-

noising (Du et al., 2016; Huang et al., 2016; Xie et al.,

2019), we smooth the attribution via partition statis-

tics so that rank errors caused by noise are alleviated.
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Original Attribution Activation Maps Downsampling

Hierarchical
Partitioning

Level 1  

Denoised Attribution

Level 2  

Level 3  

0.32

0.32

0.32

0.32

0.32

0.75

0.75

0.96

0.96 0.96

0.96

Fig. 7 The pipeline of hierarchical attribution partitioning. The re-scaled activation maps is first downsampled into L gradient
maps with different resolution. Then we explore the semantically similar pixels from top activation maps to the bottom ones,
where we only search the pixels in the region whose downsampled counterparts in the previous level are semantically similar.
Finally, we smooth each attribution pixel with the statistics in the partition. In this figure, the semantic similarity evaluation
within each blank area during hierarchical partitioning is omitted for representation simplicity.

Let us denote the attribution pixel in the ith row and

jth column as mij , whose counterpart in the activation

map is aij ∈ R1×c with c channels. Two attribution

pixels mi1j1 and mi2j2 share similar semantics if the

distance of their counterparts on the activation maps

is no more than the threshold, and the partitions that

the attribution pixels belong to should be merged with

the same attribution value assignment to keep the rank

consistency. Therefore, the activation pixels share the

same division arrangement with the attribution pixels.

By enumerating activation pixel pairs, we construct the

attribution partitions for different images, where the

update for attribution partition in each step of the enu-

meration is implemented as follows:

T ∗
i1j1 = Ti1j1 ∪ T I

i2j2(||ai1j1 − ai2j2 || ⩽ γσa)

T ∗
i2j2 = Ti2j2 ∪ T I

i1j1(||ai1j1 − ai2j2 || ⩽ γσa)

i1, i2 ∈ {1, 2, ..., h}, j1, j2 ∈ {1, 2, ..., w} (11)

where T ∗
ij and Tij represent the partition that aij be-

longs to after and before update in each step of the

enumeration. T I
ij(x) stands for the the partition Tij for

true x and means the empty set otherwise. γ is a hy-

perparameter and σa means the standard deviation of

the activation pixel norm. Meanwhile, h and w demon-

strate the height and width of the activation maps. Fig-

ure 6 depicts the attribution partition process. Since

the standard deviation demonstrates the fluctuation of

activation pixels, assigning the same partition index

to attribution pixels where the distance between their

counterparts in activation maps is less than γσa enables

adaptive exploration of pixel semantic similarity.

However, directly enumerating the pixel pairs in ac-

tivation maps leads to O(h2w2c2) computational com-

plexity, which significantly increases the cost for mixed-

precision quantization policy search. In order to effi-

ciently evaluate the semantic similarity among all at-

tribution pixels, we present the hierarchical partition-

ing strategy that decomposes the overall semantic sim-

ilarity computation into different levels, where pairwise

semantic similarity is sparsely evaluated in each hier-

archy. Therefore, the computational complexity of se-

mantic similarity measurement is low in each level, and

combining the obtained similarity across various hierar-

chies yields the overall semantic consistency efficiently.

We downsample the activation maps in multiple hierar-

chies with different resolution by average pooling, where

activation maps in the lth level with the spatial resolu-

tion hl×wl is denoted as al ∈ Rhl×wl×c. We define that

activation maps in the first level are in the lowest reso-

lution and vice versa, where semantics are represented

in various hierarchies. Therefore, semantically similar

pixels in previous level indicate that the corresponding

upsampled region of activations in the current hierarchy

contain semantically similar pixels. More specifically,

we only evaluate the similarity among activation pixels

in the region whose downsampled counterparts in the

previous level are in the same partition. The partitions

of activation maps in the lth hierarchy are constructed

via the following way:

T l∗
i1j1 = T l

i1j1 ∪ T lI
i2j2(||a

l
i1j1 − al

i2j2 || ⩽ γσl
a)

T l∗
i2j2 = T l

i2j2 ∪ T lI
i1j1(||a

l
i1j1 − al

i2j2 || ⩽ γσl
a)

(ii, j1) ∈ {(1, 1), ..., (hl, wl)}, (i2, j2) ∈ Il
i1j1 (12)

where al
ij represents the pixel in the ith row and jth col-

umn of activation maps in the lth level, and σl
a means

standard deviation of the pixel norm in activations of

the lth level. T m∗
ij and T m

ij represent the partition of am
ij

after and before update in each step during the enumer-

ation, T mI
ij (x) stands for the the partition T m

ij for true

x and means the empty set otherwise. Il
ij demonstrates

the activation regions in the lth level whose downsam-

pling pixels in the previous hierarchy are semantically

similar with those of al
ij . Figure 7 demonstrates the

pipeline of our hierarchical partitioning for attribution

smoothing. By sparsely exploring the semantic similar-

ity among activation pixels across different hierarchies,

we efficiently partition the attribution according to the

activation divisions in the final level.
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Algorithm 1 R-GMPQ
Input: Full-precision network Nf , hierarchy level L, reso-

lution reduction ratio R.
Output: Mixed-precision network Nq.

for l = 1, 2, ..., L do
Pooling original activation with kernel sizeRl to acquire

downsampled counterparts al.
Enumerating each pixel in attribution for partition as-

signment via (12).
end for
Assigning the smoothed value of attribution via (13).
Optimizing the supernetwork with (6).
Discretizing the supernetwork by selecting the bitwidth
with the largest important weights.
return The finetuned quantized network Nq.

For attribution smoothing in each division, we as-

sign all pixels with the mean value of attribution in the

partition, and the attribution pixel mij of full-precision

networks is denoised as follows:

m∗
ij =

1

|S(mij)|
∑

mxy∈S(mij)

mxy (13)

where m∗
ij is the denoised counterpart of mij . S(mij)

means attribution pixels in the same division with mij ,

whose number of pixels are represented by |S(mij)|.
Smoothing attribution maps according to semantic sim-

ilarity among pixels alleviates rank errors, so that the

correct region importance is revealed in the attribution

of full-precision networks for quantized models to imi-

tate. Since the attribution smoothing is only required

once before the generalizable mixed-precision quantiza-

tion policy search, the computational cost to obtain the

optimal compression strategy is negligible.

4.2 Dynamic Capacity-aware Attribution Imitation

The optimal attribution concentration degree varies for

input samples in different hardness given the quantiza-

tion policy, where the same concentration degree leads

to insufficient model capacity for hard images and fails

to fully utilize the network capacity for easy ones during

attribution imitation. Since the fixed capacity-aware

attribution imitation presented in GMPQ ignores the

sample hardness variation, the distribution of acquired

attribution in quantized networks is usually over-concen-

trated for easy samples and excessively divergent for

hard ones. Figure 8 demonstrates the attribution in

the optimally quantized networks and the lp norm of

the attribution in full-precision models. The optimally

quantized model locates the attribution more similarly

to the lp norm of attribution in full-precision networks

with larger p for harder samples.

The capacity of full-precision networks is regarded

to be sufficient, whose attribution rank is mimicked by

Fig. 8 The attribution in optimally quantized models and
the lp norm of attribution in full-precision counterparts for
samples in various hardness. The mean squared errors (MSE)
of the lp norm between full-precision and quantized attribu-
tion are also demonstrated. The quantized networks locate
the attribution of easy images (the top row) similarly to the
lp norm of attribution in full-precision models with smaller
p, where images containing more objects and more complex
background (the bottom row) usually requires more concen-
trated attribution due to the higher hardness.

quantized models. Therefore, we utilize the division of

the task risk between quantized and full-precision net-

works to evaluate the capacity insufficiency caused by

quantization. In order to dynamically choose the opti-

mal attribution distribution for input in various hard-

ness, our dynamic capacity-aware attribution imitation

(DCAI) employs the following the generalization risk:

RG =
∑
i,j

||Mq,ij [yx]−
M∗

f,ij [yx]
Rq

E/Rf
E∑

i,j M
∗
f,ij [yx]

Rq
E/Rf

E

||22 (14)

where Rq
E and Rf

E represent task loss for quantized and

full-precision models respectively, and M∗k
f,ij [yx] stands

for the denoised attribution of full-precision networks.

The presented DCAI strengthens the generalizability of

the mixed-precision quantization policy due to the dy-

namic attribution concentration degree that fully uti-

lizes the model capacity without insufficiency for sam-

ples in different hardness. Algorithm 1 shows the pseudo

code of the overall R-GMPQ pipeline.

5 Experiments

In this section, we conducted extensive experiments to

evaluate our methods on ImageNet for image classifi-

cation and on Pascal VOC and COCO for object de-

tection. We first introduce the implementation details

of our GMPQ and R-GMPQ. In the following abla-

tion study, we then evaluated the influence of value
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assignment strategy for p in the capacity-aware attribu-

tion imitation, investigated the effects of different terms

in the overall risk function and discovered the impact

of datasets for quantization policy search. Moreover,

we also empirically analyze the effectiveness and effi-

ciency of the hierarchical attribution partitioning, and

show the superiority of the dynamic capacity-aware at-

tribution imitation on performance. Finally, we com-

pare our GMPQ and R-GMPQ with the state-of-the-

art mixed-precision networks with respect to accuracy,

model complexity, the compression ratio and search

cost. The search cost represents the computation re-

source consumption measured by GPU hours to acquire

the mixed-precision quantization policy, and the com-

pression ratio is defined as the ratio between the BOPs

of quantized networks to those of full-precision coun-

terparts.

5.1 Implementation Details

For mixed-precision network deployment, we evaluated

the quantized networks on ImageNet for image clas-

sification and on PASCAL VOC and COCO for ob-

ject detection. ImageNet (Deng et al., 2009) approxi-

mately contains 1.2 billion and 50k images for train-

ing and validation from 1, 000 categories. For train-

ing, 224 × 224 random region crops were applied from

the resized image whose shorter side was 256. During

the inference stage, we utilized the 224 × 224 center

crop. The PASCAL VOC dataset (Everingham et al.,

2010) collected images from 20 categories, where we fin-

tuned our mixed-precision networks on VOC 2007 and

VOC 2012 trainval sets containing about 16k images

and tested our GMPQ and R-GMPQ on VOC 2007

test set consisting of 5k samples. Following (Evering-

ham et al., 2010), we used the mean average precision

(mAP) as the evaluation metric. The COCO dataset

consists of images from 80 different categories, and our

experiments were conducted on the 2014 COCO object

detection track. We trained our model with the com-

bination of 80k images from the training set and 35k

images selected from validation set (trainval35k (Bell

et al., 2016)), and tested our method on the remain-

ing minival validation set (Bell et al., 2016) including

5k images. Following the standard COCO evaluation

metric (Lin et al., 2014), we apply the mean average

precision (AP) for IoU ∈ [0.5 : 0.05 : 0.95] as the evalu-

ation metric. We also report average precision with the

IOU threshold 50% and 75% represented as AP50 and

AP75 respectively. Moreover, the average precision of

small, medium and large objects notated as APs, APm

and APl are also depicted.
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Fig. 9 The accuracy-complexity trade-off of (a) fixed and
(b) capacity-aware value assignment strategies for p in (10),
where hyperparameters were also varied.

We trained our GMPQ with MobileNet-V2 (San-

dler et al., 2018), ResNet18 and ResNet50 (He et al.,

2016), DeiT-S/T Touvron et al. (2021) architectures

for image classification, and applied VGG16 (Simonyan

and Zisserman, 2014) with SSD framework (Liu et al.,

2016) and ResNet18 with Faster R-CNN (Ren et al.,

2015) for object detection. The bit-width in the search

space for network weights and activations is 2-8 bit for

MobileNet-V2 and 2-4 bit for other architectures. In-

spired by (Cai and Vasconcelos, 2020), we utilized com-

positional convolution whose filters were weighted sum

of each quantized filters in different bitwidths, so that

complex parallel convolution was avoided. We updated

the importance weight of different branches and the

network parameters simultaneously. The hyperparame-

ters Q0
w and Q0

a in capacity-aware attribution imitation

were set to 4 and 6 respectively. Meanwhile, we only

minimize the distance between attribution in quantized

networks and lp norm of that in full-precision counter-

parts for top-500 pixels with the highest attribution in

the real-valued model. We downsampled the activation

maps with three levels in the hierarchical partitioning,

where the height and width both decrease by two times

between adjacent levels. Meanwhile, the hyperparame-

ter γ that controls the attribution partition merger in

(12) was assigned to 0.05.

For evaluation on ImageNet, we finetuned the mixed-

precision networks with the Adam (Kingma and Ba,

2014) optimizer. The learning rate started from 0.001

and decayed twice by multiplying 0.1 at the 20th and

30th epoch out of the total 40 epochs. For object de-

tection, the backbone was pretrained on ImageNet and

then finetuned on PASCAL VOC and COCO with the

same hyperparameter settings. The batchsize was set to

256 in all experiments. By adjusting the hyperparam-

eters ζ and η in (6), we obtained the mixed-precision

networks at different accuracy-complexity trade-offs.
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(a) Varying ζ and η (b) Varying datasets

Fig. 10 (a) The accuracy-complexity trade-off for different
η, where ζ was varied to select various network capacity. (b)
The top-1 accuracy on ImageNet, the BOPs and the aver-
age search cost of the mixed-precision quantization policy
searched on different small datasets, where GH means GPU
hours for the search cost.

5.2 Ablation Study

In this section, we analyze the effect of attribution rank

preservation and the capacity-aware attribution imita-

tion in GMPQ at first, and then show the effective-

ness of the proposed hierarchical attribution partition-

ing and dynamic capacity-aware attribution imitation

in R-GMPQ by the ablation study. Unless clarified, we

compressed the ResNet18 architecture whose mixed-

precision quantization policy was searched on CIFAR-

10 and evaluated on ImageNet for all experiments in

this section.

5.2.1 Ablation Study for GMPQ

In order to investigate the effectiveness of attribution

rank preservation, we assign the value of p in CAI with

different strategies. By varying the hyperparameters ζ

and η in the overall risk (6), we evaluated the influ-

ence of task, complexity and generalization risks with

respect to the model accuracy and efficiency. Moreover,

we searched the generalizable mixed-precision quantiza-

tion policy on different small datasets to discover the ef-

fects on accuracy-complexity trade-offs and search cost.

Effectiveness of value assignment strategies

for p: To investigate the influence of value assignment

strategies for p on the accuracy-complexity trade-off, we

searched the mixed-precision quantization policy with

fixed and capacity-aware p value. For fixed p, we set

the value as 1, 2, 3 and 4 that constrains the attribu-

tion of quantized networks with various concentration

degree. The capacity-aware strategy assigns p with the

strategy shown in (10), where the product of Q0
w and

Q0
a was varied in the ablation study. Figure 9(a) and

9(b) demonstrate the accuracy-complexity trade-off for

fixed and capacity-aware value assignment strategies of

p respectively with different hyperparameters. The opti-

mal accuracy-complexity curve in capacity-aware strat-

egy outperforms that in fixed strategy, which indicates

the importance of attribution variation with respect to

network capacity. For fixed strategy, medium p outper-

forms other values. Small p causes model capacity in-

sufficiency for quantized networks and large p fails to

utilize the network capacity. For capacity-aware strat-

egy, setting the product of Q0
w and Q0

a to 24 results in

the optimal accuracy-complexity trade-off.

Influence of hyperparameters in overall risk

(6): In order to verify the effectiveness of the general-

ization risk, we report the performance with different

η. Meanwhile, we also varied the hyperparameter ζ to

obtain different accuracy-complexity trade-offs. Figure

10(a) illustrates the results, where medium η achieves

the best trade-off curve. Large η fails to leverage the

supervision from annotated labels, and small η ignores

the attribution rank consistency which enhances the

generalization ability of the mixed-precision quantiza-

tion policy. With the increase of ζ, the resulted policy

prefers lightweight architectures and vice versa. For dif-

ferent η, the same assignment of ζ selects similar BOPs

in the accuracy-complexity trade-off.

Effects of datasets for network quantization

policy search: We searched mixed-precision quantiza-

tion policy on different small datasets including CIFAR-

10, Cars, Flowers, Aircraft, Pets, Food, CIFAR-100 to

discover the effects on model accuracy and efficiency.

We also provide the performance of quantization poli-

cies searched on the original ImageNet for compari-

son. Figure 10(b) demonstrates the top-1 accuracy and

the BOPs for the optimal mixed-precision networks ob-

tained on different small datasets. We also show the

average search cost across all computation cost con-

straint in the legend, where GH means GPU hours that

measures the search cost. Among all small datasets,

the mixed-precision networks searched on CIFAR-100

achieves the best accuracy-efficiency trade-off, because

the size of CIFAR-100 is the largest with the diverse

categories. Moreover, the gap of object category be-

tween CIFAR-100 and ImageNet is the smallest com-

pared with other datasets. Leveraging extremely small

numbers of data for policy search may lead to overfit-

ting, and utilizing the full training set of small datasets

is required to search generalizable mixed-precision quan-

tization strategies without the risk of overfitting.

5.2.2 Ablation Study for R-GMPQ

Since the hierarchical attribution partitioning efficiently

smooths the attribution with similar semantics, the rank

errors are alleviated and the true region importance is

revealed by the attribution ranks of full-precision mod-

els. To investigate the influence of the hierarchy set-
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Table 2 The BOPs (G), top-1 accuracy and the computational cost (hours) of hierarchical attribution partition w.r.t. different
numbers of hierarchies, resolution reduction ratios between adjacent levels and the assignment of the hyperparameter γ. RR
ratio means the resolution reduction ratio between adjacent levels.

Hierarchies RR ratio
γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.5

BOPs Top-1 Cost BOPs Top-1 Cost BOPs Top-1 Cost BOPs Top-1 Cost

One-level
- 7.1 68.3 8.54 7.2 68.6 8.25 7.2 68.4 8.60 7.5 68.2 8.72
2 7.1 61.2 0.22 7.2 61.0 0.22 7.3 60.7 0.21 7.3 60.5 0.19
4 7.4 60.5 0.09 7.3 60.7 0.10 7.2 59.9 0.10 7.6 60.1 0.09

Two-level
2 7.3 68.2 0.68 7.4 68.5 0.62 7.2 68.4 0.66 7.5 68.2 0.69
4 7.2 68.1 0.26 7.2 68.4 0.24 7.6 68.3 0.27 7.2 68.0 0.49

Three-level
2 7.1 68.2 0.20 7.2 68.5 0.15 7.5 68.3 0.16 7.3 68.1 0.41
4 7.2 68.0 0.09 7.4 68.3 0.07 7.1 68.1 0.08 7.4 67.8 0.18

Five-level 2 7.5 67.5 0.07 7.3 68.1 0.04 7.2 67.8 0.05 7.4 67.1 0.13

Table 3 The model storage cost (M), model computational
cost (G), top-1 accuracy (%) and search cost (GPU hours) on
ImageNet. Param. means the model storage cost, and Comp.
stands for the compression ratio of BOPs.

Methods Param. BOPs Comp. Top1 Cost
CAI 4.1 7.3 254.9 68.0 0.91
DCAI 3.5 7.2 258.5 68.5 0.95

tings on the smoothing efficiency and the policy gener-

alizability, we implemented the hierarchical attribution

partitioning with various numbers of activation levels

and different resolution reduction ratio for adjacent lev-

els. Besides, the impact of the hyperparameter γ that

controls the activation partition merger was also ex-

plored. Meanwhile, DCAI adaptively adjusts p in lp
norm of the full-precision model attribution based on

the sample hardness, so that the capacity of quantized

networks is fairly evaluated and the optimal attribu-

tion concentration degree is dynamically selected in the

imitation for each input. To verify the effectiveness of

DCAI, our methods with static capacity-aware and dy-

namic capacity-aware strategy of p are compared with

respect to the accuracy-complexity trade-off and the

search cost. Finally, we compare the ARD of GMPQ

and R-GMPQ to show the effectiveness of attribution

smoothing and DCAI in attribution rank consistency

preservation.

Impacts of activation levels and resolution re-

duction ratio between adjacent levels: We parti-

tioned the attribution maps with various numbers of

levels and resolution reduction ratios between adjacent

levels for smoothing, where the accuracy-complexity

trade-off and the computational cost for partitioning

is demonstrated in Table 2. Increasing the number of

hierarchies reduces the computational cost for parti-

tioning while degrades the policy generalizability, since

decomposing the search space to more subgroups de-

creases the solution optimality. However, the attribu-

tion partitioning less than three levels is not sensitive

to the number of hierarchies, and we choose the three-

level hierarchies for attribution partitioning to achieve

Table 4 The average attribution rank difference across all
test images for different mixed-precision quantization meth-
ods.

ImageNet VOC COCO

Random 39.94 40.07 78.95
GMPQ 18.14 19.63 38.21

R-GMPQ 13.57 16.59 30.33

high efficiency. Meanwhile, higher reduction ratio also

results in lower computational cost for attribution par-

titioning and worse accuracy-complexity trade-off on

ImageNet, because aggressive activation downsampling

leads to significant information loss. Therefore, we as-

signed the resolution reduction ratio with two in other

experiments.

Influence of the hyperparameter γ in (12):

The hyperparameter γ controls the activation division

merger in hierarchical partitioning. Table 2 shows the

accuracy-complexity trade-off and the computational

time of attribution partitioning with various γ, where

the medium γ achieves the optimal trade-off. Large γ

smooths excess pixels by the statistics with significant

information loss, and small γ fails to alleviate the dis-

cretization errors due to the biased statistics of insuffi-

cient pixels for each partition.

Comparison between CAI and DCAI:We com-

pare static capacity-aware and dynamic capacity-aware

strategies for value assignment of p in order to show the

superiority of DCAI, where the accuracy-complexity is

shown in Table 3. Therefore, we draw the conclusion

that DCAI can further strengthen the policy generaliz-

ability with negligible extra search cost.

ARD of GMPQ and R-GMPQ: We report the

ARD of quantized models with policies searched with

our GMPQ and R-GMPQ on CIFAR-10 in Table 4,

where different quantized networks evaluated on the

same dataset have similar model complexity. The exper-

imental results prove that attribution rank consistency

learned from one dataset can be generalized to different

data distribution. Compared with the random policies,

our method can significantly reduce the rank inconsis-
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Table 5 The top-1 accuracy (%) on ImageNet, parameter
storage cost (M), model computational cost (G) and the
search cost (GPU hours). Param. means the model storage
cost, and Comp. stands for the compression ratio of BOPs.
The training cost for ResNet18, ResNet50 and MobileNet-V2
is 60.8, 80.9 and 37.4 GPU hours.

Methods Param. BOPs Comp. Top1 Cost.

ResNet18
Baseline 46.8 1853.4 − 69.7 −
ALQ 1.8 58.5 31.7 67.7 34.7

HAWQ 5.8 34.0 54.5 68.5 15.6
GMPQ 5.4 27.8 66.7 70.2 0.5

R-GMPQ 5.3 27.1 68.3 70.4 0.6
APoT 4.6 16.3 113.8 69.8 −
SDQ 5.2 15.7 118.1 69.1 9.0

GMPQ 4.1 15.3 121.0 69.9 0.6
R-GMPQ 3.8 15.6 118.7 70.1 0.7
EdMIPS 4.7 7.2 258.0 65.9 9.5

EdMIPS-C 4.5 7.4 251.9 59.1 0.6
GMPQ 3.7 7.2 255.8 67.8 0.9

R-GMPQ 3.5 7.2 258.5 68.5 1.1

ResNet50
Baseline 97.5 3952.6 − 76.4 −
HAQ 12.2 50.3 78.6 75.5 67.7

BP-NAS 13.4 55.2 71.7 76.7 30.2
GMPQ 12.4 53.0 74.6 76.7 2.2

R-GMPQ 10.6 51.8 76.3 76.8 2.5
HMQ 15.6 37.7 104.8 75.5 49.4

BP-NAS 11.3 33.2 119.0 75.7 35.6
GMPQ 9.6 30.7 128.6 75.8 2.7

R-GMPQ 7.9 30.1 131.5 76.2 3.1
EdMIPS 13.9 15.6 254.2 72.1 26.5

EdMIPS-C 13.7 16.0 247.2 65.6 2.9
GMPQ 8.8 15.7 252.2 73.6 3.4

R-GMPQ 10.2 15.7 251.8 74.1 3.8

MobileNet-V2
Baseline 13.4 337.9 − 71.9 −

RQ 2.7 11.9 28.4 68.0 −
GMPQ 1.4 10.4 32.6 71.5 1.7

R-GMPQ 2.2 9.9 34.1 71.8 1.9
HAQ 1.4 8.3 41.0 69.5 51.1

HAQ-C 1.6 8.1 41.6 62.7 4.5
DJPQ 1.9 7.9 43.0 69.3 12.2
GMPQ 1.2 7.4 45.8 70.4 2.6

R-GMPQ 1.1 7.2 46.7 70.9 2.9
HMQ 1.7 5.2 64.4 70.9 33.5
DQ 1.7 4.9 68.7 69.7 21.6
SDQ 1.8 4.9 68.7 71.9 15.8

GMPQ 1.0 4.8 69.7 70.1 2.8
R-GMPQ 1.3 4.7 72.2 70.5 3.1

tency and enhance the accuracy-complexity trade-offs

across different datasets.

5.3 Comparison with the Existing Mixed-precision

Quantization

In this section, we compare our GMPQ with the state-

of-the-art fixed-precision models containing APoT (Li

et al., 2020b) and RQ (Louizos et al., 2018) and mixed-

precision networks including ALQ (Qu et al., 2020),

Table 6 The top-1 accuracy (%) on ImageNet, parameter
storage cost (M), model computational cost (G) and the
search cost (GPU hours) for vision transformer architectures.
The training cost of Deit-T/S is 86.2 and 202.7 GPU hours.

Methods Param. BOPs Comp. Top1 Cost.

DeiT-T
Baseline 5.11 1304.7 − 72.2 −
HAQ 0.50 20.9 62.4 62.6 27.5

EdMIPS 0.45 23.3 56.0 62.1 11.1
GMPQ 0.43 20.7 63.0 63.9 0.7

R-GMPQ 0.43 20.5 63.6 64.2 0.8
HAQ 0.63 31.7 41.2 67.5 26.4

EdMIPS 0.62 32.3 40.4 67.7 11.7
GMPQ 0.60 30.0 43.5 68.0 0.8

R-GMPQ 0.61 30.2 43.2 68.5 0.9

DeiT-S
Baseline 22.10 4694.2 − 79.9 −
HAQ 2.07 58.6 80.1 72.5 73.2

EdMIPS 1.86 64.7 72.6 72.7 41.2
GMPQ 1.80 56.4 83.2 74.1 1.6

R-GMPQ 1.85 58.5 80.2 74.9 1.8
HAQ 2.69 93.2 50.4 75.8 72.7

EdMIPS 2.64 93.3 50.3 75.7 42.5
GMPQ 2.58 90.7 51.8 76.4 1.5

R-GMPQ 2.56 92.9 50.5 76.7 1.6

HAWQ (Dong et al., 2019c), HAQ (Wang et al., 2019a),

EdMIPS (Cai and Vasconcelos, 2020), BP-NAS (Yu

et al., 2020), HMQ (Habi et al., 2020), DQ (Uhlich

et al., 2019) and SDQ Huang et al. (2022) on Ima-

geNet for image classification and on PASCAL VOC

and COCO for object detection. We also provide the

performance of full-precision models for reference. The

accuracy-complexity trade-offs of baselines are copied

from their original papers or were obtained by our im-

plementation with the officially released code, and the

search cost was evaluated by re-running the compared

methods. We searched the optimal quantization policy

on CIFAR-10 and deployed the mixed-precision models

on ImageNet, PASCAL VOC and COCO.

5.3.1 Image Classification

Results on ImageNet: Table 5 illustrates the com-

parison of storage and computational cost, the com-

pression ratio of BOPs, the top-1 accuracy and the

search cost across different architectures and mixed-

precision quantization methods. HAQ-C and EdMIPS-

C demonstrate that we leveraged HAQ and EdMIPS

that searched the quantization policy on CIFAR-10 and

directly evaluated the obtained quantization policy on

ImageNet. By comparing the accuracy-complexity trade-

off with the baseline methods for different architec-

tures, we conclude that our GMPQ achieves the com-

petitive accuracy-complexity trade-off under various re-

source constraint with significantly reduced search cost.
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Table 7 The mAP (%) on the PASCAL VOC dataset, pa-
rameter storage cost (M), BOPs (G) and the search cost
(GPU hours). The training cost for VGG16 and ResNet18
is 19.5 and 18.7 GPU hours.

Methods Param. BOPs Comp. mAP Cost

SSD & VGG16
Baseline 105.5 27787.7 − 72.4 −
HAQ 42.7 847.2 32.8 70.9 62.5

HAQ-C 42.9 819.7 33.9 67.6 5.1
EdMIPS 33.5 958.2 29.0 69.4 25.9

EdMIPS-C 37.2 868.4 32.0 65.2 1.5
GMPQ 36.6 796.2 34.9 70.5 1.6

R-GMPQ 32.6 761.3 36.5 70.8 1.8
HAQ 35.5 430.15 64.6 69.1 67.9

HAQ-C 32.3 445.3 62.4 66.4 6.8
EdMIPS 29.4 454.0 61.2 68.7 30.2

EdMIPS-C 31.3 423.6 65.6 64.3 1.6
GMPQ 24.7 413.5 67.2 69.2 1.8

R-GMPQ 26.9 406.8 68.3 70.3 2.0

Faster R-CNN & ResNet18
Baseline 47.4 22534.8 − 74.5 −
HAQ 8.3 342.5 65.8 73.5 38.9

HAQ-C 8.5 337.9 66.7 70.7 4.1
EdMIPS 9.3 361.7 62.3 72.3 16.6

EdMIPS-C 8.7 348.8 64.6 69.8 0.4
GMPQ 6.4 337.9 66.7 73.9 0.5

R-GMPQ 7.2 324.7 69.4 74.3 0.6
HAQ 8.0 303.7 74.2 73.2 35.2

HAQ-C 7.6 310.4 72.6 70.4 5.2
EdMIPS 18.7 348.8 71.1 71.8 18.1

EdMIPS-C 7.4 299.3 75.3 69.2 0.4
GMPQ 6.2 286.3 78.7 73.4 0.5

R-GMPQ 6.8 284.5 79.2 73.8 0.6

Moreover, the presented R-GMPQ further enhances the

trade-off with negligible extra search cost. Meanwhile,

we also searched the quantization policy on CIFAR-10

directly using HAQ and EdMIPS. Although the search

cost is reduced sizably, the accuracy-complexity trade-

off is far from the optimal across various resource con-

straint, which indicates the lack of generalization abil-

ity for the quantization policy obtained by the con-

ventional methods. Our GMPQ preserves the attribu-

tion rank consistency during the quantization policy

search with acceptable computational overhead, and

enables the mixed-precision quantization searched on

small datasets to generalize to large-scale datasets. The

presented R-GMPQ alleviates the ranking errors by

smoothing attribution with hierarchical partitions and

dynamically selects the optimal attribution distribu-

tion according to the sample hardness, which further

enhances the generalizability of the obtained mixed-

precision quantization strategy.

Our method can also be extended to other network

architectures such as vision transformers. To verify this,

we apply our method on DeiT-T/S (Touvron et al.,

2021) to search for the optimal quantization policy. We

only quantize weights and activations of fully-connected

layers, and the bitwidth selection includes 2, 3 and 4

bits respectively. The results in Table 6 clearly demon-

strates the superiority of GMPQ and R-GMPQ on vi-

sion transformers in mixed-precision quantization, which

indicates that our method can be generalized to a wide

variety of architectures with only slight modifications.

5.3.2 Object Detection

Results on PASCAL VOC: We employed the SSD

detection framework with VGG16 architectures and the

Faster R-CNN detector with the ResNet18 backbone to

evaluate our GMPQ and R-GMPQ on object detection.

Table 7 shows the results of various mixed-precision

networks. Compared with the accuracy-complexity trade-

off directly searched on PASCAL VOC by the state-of-

the-art methods, our GMPQ and R-GMPQ acquire the

competitive results with significantly reduced search

cost on both detection frameworks and backbones. Mean-

while, compressing the networks with the quantization

policy searched by HAQ and EdMIPS on CIFAR-10 de-

grades the performance significantly due to the lack of

policy generalizability. Since the mixed-precision net-

works are required to be pretrained on ImageNet, the

search cost decrease on PASCAL VOC is more sizable

than that on ImageNet. Moreover, the two-stage detec-

tor Faster R-CNN has stronger discriminative power

for accurate attribution generation, whose accuracy-

complexity trade-off is more optimal compared with the

one-stage detector due to the higher generalizability of

quantization policies.

Results on COCO: Following the same detection

frameworks and backbone networks on PASCAL VOC,

we also evaluated our GMPQ and R-GMPQ on the

COCO dataset. Table 8 depicts the accuracy-complexity

trade-offs and the search cost in different computational

budget. Compared with the state-of-the-art EdMIPS,

GMPQ reduces the search cost by 98.5% (0.5 GPU

hours vs. 32.4 GPU hours) with similar performance

in the Faster R-CNN framework with ResNet-18, and

R-GMPQ further enhances the policy generalizability

with extra search cost of only 0.1 ∼ 0.2 GPU hours

across different architectures and various model com-

plexity. Moreover, the search cost reduction is much

more sizable than that on PASCAL VOC due to the

large scale of the COCO dataset.

6 Conclusion

In this paper, we have proposed a generalizable mixed-

quantization method called GMPQ for efficient infer-

ence. The presented GMPQ searches the quantization
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Table 8 BOPs(G), mAP@[.5, .95] and search cost (GPU hours) on COCO with state-of-the-art mixed-precision quantization
methods. The average precision at different IoU thresholds and that for objects in various sizes are also illustrated. The training
cost for VGG16 and ResNet18 is 56.5 and 53.2 GPU hours.

Methods Param. BOPs Comp. mAP AP50 AP75 APs APm APl Cost

SSD & VGG16
Baseline 105.5 27787.7 − 23.2 41.2 23.4 5.3 23.2 39.6 −
HAQ 30.6 610.7 45.5 21.4 38.9 21.0 5.5 22.4 34.0 114.8

HAQ-C 39.1 593.7 46.8 20.4 37.5 20.2 5.2 21.8 33.0 16.1
EdMIPS 21.2 621.6 44.7 20.8 38.4 20.7 5.2 22.5 33.8 38.6

EdMIPS-C 33.8 653.8 42.5 19.3 36.2 18.9 4.6 20.5 32.2 1.5
GMPQ 29.3 588.7 47.2 22.2 40.2 22.8 5.8 24.4 35.9 1.6

R-GMPQ 23.8 572.9 48.5 22.8 41.0 23.7 6.3 25.3 38.6 1.8
HAQ 12.4 445.7 62.4 20.1 37.5 19.9 5.2 21.3 32.6 95.3

HAQ-C 25.3 458.5 60.6 19.2 35.4 18.8 4.3 19.9 31.5 15.8
EdMIPS 20.5 465.5 59.7 20.8 38.4 20.7 5.2 22.5 33.8 36.7

EdMIPS-C 26.1 432.2 64.3 18.1 34.4 17.5 4.5 19.1 29.4 1.6
GMPQ 17.1 426.8 65.1 21.3 38.7 21.4 5.7 22.5 34.7 1.8

R-GMPQ 18.3 407.4 68.2 22.0 40.1 22.6 6.1 24.2 37.5 2.0

Fatser R-CNN & ResNet18
Baseline 47.4 22534.8 − 27.6 45.7 29.1 15.3 29.2 36.2 −
HAQ 10.3 471.8 47.8 25.5 44.0 26.3 12.8 27.5 33.8 89.9

HAQ-C 11.1 529.0 42.6 22.4 38.2 23.8 11.5 24.5 29.1 9.4
EdMIPS 9.4 484.6 46.5 23.2 39.9 24.1 11.6 25.3 30.1 29.7

EdMIPS-C 9.9 508.3 44.3 22.1 39.7 22.9 11.1 23.8 30.2 0.4
GMPQ 10.3 457.1 49.3 26.8 45.7 28.1 13.8 29.3 35.0 0.5

R-GMPQ 9.1 460.8 48.9 27.1 45.9 28.6 14.6 28.6 36.0 0.6
HAQ 8.2 313.9 71.8 23.6 40.2 24.5 12.0 24.9 30.6 92.4

HAQ-C 8.4 302.9 74.4 21.6 36.9 22.6 12.1 23.2 28.7 7.6
EdMIPS 8.7 307.9 73.2 21.8 38.0 22.8 11.3 23.3 28.1 32.4

EdMIPS-C 7.5 293.8 76.7 20.4 36.0 21.0 9.5 22.0 27.5 0.4
GMPQ 7.2 285.6 78.9 25.5 44.4 26.3 12.6 27.9 33.8 0.5

R-GMPQ 6.5 290.8 77.5 26.2 44.6 27.1 14.5 27.8 35.1 0.6

policy on small datasets with attribution rank preserva-

tion, so that the acquired quantization strategy can be

generalized to achieve the optimal accuracy-complexity

trade-off on large-scale datasets with significant search

cost reduction. We have also presented R-GMPQ that

alleviates the rank errors via hierarchical attribution

partitioning, and designed the dynamic capacity-aware

attribution imitation to adaptively select the optimal

attribution distribution for samples in various hardness.

Compared with the state-of-the-art mixed-precision quan-

tization methods, experiments have depicted that our

approach achieves competitive accuracy-complexity trade-

offs on image classification and object detection with

significantly reduced search cost. The limitations of this

framework are two-fold. First, we cannot strictly limit

the BOPs of acquired quantized networks to be within

the given budget as the utilized complexity loss can only

minimize the model complexity without accurate con-

trol. Second, the generalizable mixed-precision quan-

tization for other network architectures remain unex-

plored. Therefore, the future work contain designing

proper generalization risk for supernet optimization to

accurately control the model complexity, and include

thoroughly verifying the effectiveness of attribution im-

itation on other network architectures.
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Appendix

A. Visualization of Optimal Quantization Policy

We searched the quantization policy on different small

datasets with various architectures via the presented

GMPQ. Figure 11 demonstrates the optimal bitwidth

allocation for weights and activations of each layer, where

ResNet18 was compressed and the policy was searched

on various small datasets including CIFAR-10 (Krizhevsky

et al., 2009), Cars (Krause et al., 2013), Flowers (Nils-

back and Zisserman, 2008), Aircraft (Maji et al., 2013),

Pets (Parkhi et al., 2012) and Food (Bossard et al.,

2014). Figure 12 depicts the obtained quantization strat-

egy searched on CIFAR-10 with MobileNet-V2 (Sandler

et al., 2018), ResNet18 (He et al., 2016) and ResNet50

architectures. The BOPs limit was set to 7.4G, 15.3G

and 30.7G for MobileNet-V2, ResNet18 and ResNet50.

For quantization policy searched on different small

datasets, the optimal bitwidth allocation varies signifi-

cantly although the complexity of the obtained model

is close to each other. It is observed that activations are

usually assigned with higher bitwidths than weights in

most quantization policy, indicating that the classifica-
tion performance and attribution rank consistency are

more sensitive to activation quantization than weight

quantization. The bitwidth distribution of weights and

activations obtained on Cars, Aircraft, Food, and CIFAR-

10 is similar, which also achieves better generalization

performance on largescale datasets compared with that

searched on Flowers and Pets. For the Flowers and Pets

datasets, the optimal quantization policy is similar to

uniform quantization in fixed-precision networks, which

also leads to worse accuracy-complexity trade-offs due

to the lack of generalization ability.

For quantization policy for different architectures,

it is observed that Layer 7, 12 and 17 in ResNet18 con-

taining residual connections require the larger bitwidth

compared with their corresponding regular branches.

Since MobileNet-V2 is very compact, it receives higher

bitwidths allocations than other network architectures.

On the contrary, ResNet50 is compressed with lower

bitwidths due to the significant redundancy compared

with MobileNet-V2.

FoodPetsAircraft

CIFAR-10 Cars Flowers

Fig. 11 The visualization of the optimal quantization pol-
icy searched on different small datasets including CIFAR-10,
Cars, Flowers, Aircraft, Pets and Food.

B. Accuracy of Quantization Policy Searched on

Different Small Datasets

In this section, we show the top-1 accuracy and BOPs

on ImageNet of our GMPQ with the quantization policy

searched on different small datasets including CIFAR-

10, Cars, Flowers, Aircraft, Pets and Food. The applied

network architectures contain MobileNet-V2, ResNet-

18 and ResNet-50, and more accuracy-complexity trade-

offs for ResNet-18 are demonstrated in Figure 10(b).

Table 9 illustrates the accuracy and the complexity

on ImageNet, where those of full-precision networks

are also provided. The search cost is significantly re-

duced across various architectures compared with con-

ventional mixed-precision quantization methods shown

in Table 5, while the accuracy is only degraded slightly.

The accuracy of quantization policy searched on CIFAR-

10 achieves the highest, because the gap of object cat-

egory between CIFAR-10 and ImageNet is the smallest

compared with other datasets. Although the discrep-

ancy of object class distribution between ImageNet and

the small datasets such as Aircraft is non-negligible, the

accuracy of the mixed-precision networks is still compa-

rable with state-of-the-art approaches shown in Table

5 due to the attribution rank preservation.

C. Explanation of the Generalization Risk (9)

As visualized in Figure 3 of the manuscript, quantized

networks with lower capacity tend to acquire more con-

centrated attribution although the attribution rank re-

mains similar, where the networks focus on smaller re-

gions to avoid capacity insufficiency for image repre-

sentation. To further demonstrate the soundness of the

observation, we report the entropy of attribution for

networks in different bitwidths that reveals the attribu-
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ResNet50 Bitwidth ResNet18 Bitwidth MobileNet-V2 Bitwidth 

Fig. 12 The visualization of the optimal quantization policy searched on CIFAR-10 by our GMPQ. We evaluated our method
with MobileNet-V2, ResNet18 and ResNet50 on ImageNet for image classification.

Table 9 Top-1 accuracy (%) and BOPs (G) on ImageNet of the mixed-precision networks searched on different small datasets
across various network architectures.

Architecture
Full-precision CIFAR-10 Cars Flowers Aircraft Pets Food
Top1 BOPs Top1 BOPs Top1 BOPs Top1 BOPs Top1 BOPs Top1 BOPs Top1 BOPs

MobileNet-V2 71.9 337.9 70.4 7.4 69.8 7.2 67.8 7.9 69.9 7.5 66.7 7.8 69.9 7.1
ResNet18 69.7 1853.4 69.9 15.3 69.6 16.4 68.7 14.9 69.5 14.8 67.9 17.2 16.6 69.2
ResNet50 76.4 3952.6 75.8 30.7 75.5 29.8 73.8 33.2 75.6 29.5 73.3 34.1 75.6 32.7

Fig. 13 The relation between the attribution entropy and
the model complexity, and they are significantly positively
correlated.

tion concentration. The entropy E is defined as follows:

E =
∑
i,j

−Mij [yx] logMij [yx] (15)

Large entropy indicates more diverse attribution and

vice versa. Figure 13 shows the average attribution en-

tropy and BOPs across the validation set of ImageNet

dataset for ResNet18 in networks quantized by different

optimal quantization policies (searched on ImageNet).

The correlation coefficient is 0.733 between the attribu-

tion entropy and network BOPs, which verifies the ob-

servation that networks with smaller capacity acquire

more concentrated attribution. For the value of p in

(9), excessively large p for attribution imitation leads to

over-concentrated attribution. Therefore, the networks

focus on small image regions with little information,

and the network capacity is not fully utilized for fea-

ture representation. On the contrary, extremely small

p for attribution imitation results in attribution diver-

gence, and focusing on large image regions causes the

capacity insufficiency in the forward pass. Therefore,

Table 10 The accuracy-complexity trade-offs for different
definition of p in (9).

Methods Param. BOPs Comp. Top1 Cost.
Baseline 46.8 1853.4 − 69.7 −

Squareroot 4.0 7.3 253.9 67.6 0.9
Linear 3.7 7.2 255.8 67.8 0.9
Square 3.6 7.5 247.1 67.5 0.9

we require the attribution rank of quantized and full-

precision networks to be similar, while the attribution

concentration is adjusted according to the network ca-

pacity. We also conducted ablation studies to show the

effectiveness of the definition shown in (9). We leverage

two other functions to acquire p based on the average

bitwidth of the networks in the following:

p =
1

L

L∑
k=1

[Q0
w/(

Nk
w∑

i=1

πk
w,iq

k
w,i)]

1
2 · [Q0

a/(

Nk
a∑
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πk
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k
a,i)]

1
2
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1

L

L∑
k=1

[Q0
w/(

Nk
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πk
w,iq

k
w,i)]

2 · [Q0
a/(

Nk
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πk
a,iq

k
a,i)]

2

(16)

where the concavity is different for these functions. Ta-

ble 10 shows the accuracy-complexity trade-off for ResNet18

on the validation set of ImageNet, where the linear form

shown in (8) of the manuscript achieves the best per-

formance.

D. Accuracy during the Compression Policy Search

We optimized the supernet containing all bitwidth se-

lections with and without the generalization risk shown

in (7) respectively, where we leveraged the training set

from CIFAR-10 for policy search and validation set
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Fig. 14 The classification accuracy for quantization policies
acquired during the search process.

from ImageNet for evaluation. Meanwhile, we also di-

rectly utilized the training set of ImageNet for opti-

mizing the supernet, and report the accuracy curve for

reference as the baseline. We leveraged ResNet18 as the

backbone architecture, and the BOPs budget was set as

7.5G. Evaluating the acquired quantization policy re-

quires extremely high cost because we have to finetune

the quantized models until convergence. Therefore, we

evaluated the searched quantization policies from dif-

ferent experimental settings every 10 epochs during the

search process, where the quantization policy with the

largest importance weight is selected for evaluation. We

plot the accuracy curve in Figure 14, where our the ob-

jective with the generalization risk consistently outper-

forms the one without the generalization risk. The ad-

vantages of our method become more significant when

the search process gradually converges. Meanwhile, the

gap between our method and the optimal compression

policy acquired by searching with ImageNet is small.

The results can empirically verify the higher general-

ization ability of our method.

E. Influence of the Sample Size of Datasets for

Policy Searching

In order to analysis the influence of dataset sample size

for policy searching, we searched the mixed-precision

quantization policies with different sample sizes on CIFAR-

10. The data amount is set to be 20%, 40%, 60%, 80%

and 100% of the original training set, and we report the

accuracy-complexity trade-offs on the ImageNet. More-

over, we also demonstrate the performance of the op-

timal quantization policy that is obtained by searching

on full training datasets of ImageNet. The networks

quantized with acquired policies are finetuned by the

datasets for evaluation. The results bring us following

conclusions:

– Utilizing extremely small amount of data (e.g. ⩽
40%) from CIFAR-10 usually leads to the over-fitting

for quantization policy. Since the accuracy gap be-

tween the acquired quantization policy and the opti-

mal one is large, the quantization policy search faces

the over-fitting problem.

– Enlarging the size of the dataset for quantization

policy search can alleviate the over-fitting of the ac-

quired bitwidth assignment between policy search

and model deployment, since we observe that the

model achieves similar accuracy for optimal quanti-

zation policy and those searched on the full training

set of CIFAR-10.

F. Formulation of Rank Errors caused by Attri-

bution Noise

The attribution acquired by Grad-cam contains noise

Selvaraju et al. (2017); Sundararajan et al. (2017) which

changes the attribution value slightly. However, the er-

rors on the attribution map are significantly amplified

by the ranking operation, which deviates the attribu-

tion rank of full-precision networks from the correct one

obviously in attribution imitation. The generalization

risk shown in (8) can be expanded as:

RG(W ,Q,x) =
∑
i,j

||r(Mq,ij [yx])− r(Mf,ij [yx])||22

=
∑
i,j

||r(Mq,ij [yx])− r(Mf,ij [yx] + δij)||22

+ ||r(Mf,ij [yx] + δij)− r(Mf,ij [yx])||22 (17)

where δij means the noise of the attribution satisfying

Gaussian distribution with zero mean and σij standard

deviation. The cross term in the expansion is regarded

to be zero for omission because there is no statistical

correlation between the attribution value and the noise.

The first term in (17) is the objective that we aim to

optimize, and the second term can be represented as the

KL-divergence between distribution of the two ranking

variables. The KL-divergence can be written as:

DKL(p(r(M) = k)||p(r(M + δ) = k))

=

∫
M

p(r(M) = k) log
p(r(M) = k)

p(r(M + δ) = k)
dM

=

∫
M

p(r(M) = k) · ∂p(r(M) = k)

∂M
· δ

M
dM

= C0δ (18)
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Table 11 The accuracy-complexity trade-off across different sample size from CIFAR-10 for search.

20% 40% 60% 80% 100% Optimal
Accuracy 63.5 65.7 66.6 67.4 67.8 67.9
BOPs 7.5G 7.3G 7.5G 7.2G 7.2G 7.3G

Table 12 The accuracy-complexity trade-off across different
numbers of top-k pixels for attribution rank preservation.

k 100 200 500 1000 2000
Accuracy 67.1 66.6 67.8 67.7 67.5
BOPs 7.3G 7.4G 7.2G 7.5G 7.4G

where we omit the subscript i and j for simplification.

All variables related to M and k is deterministic when

optimizing (17), and we treat them as a constant C0.

Minimizing the second term in (17) equals to mini-

mizing the KL-divergence shown in (18), which is also

equivalent to minimizing the standard deviation σ in

the Gaussian distribution of δ. As semantically similar

pixels usually have feature importance in similar distri-

bution, we smooth attribution of these pixels by averag-

ing their attribution value. Therefore, the standard de-

viation of their noise can be reduced since they are i.i.d.

In conclusion, leveraging semantically similar pixels for

attribution smoothing can reduce rank errors caused by

attribution noise, which provides accurate guidance for

quantized models to locate attribution correctly.

G. Ablation Study w.r.t. the Number of Pixels

in Attribution Rank Preservation

Since many attribution pixels have the extremely low

value (less than 10−2), imitating these pixels on full-

precision networks for quantized ones cannot bring suf-

ficient supervision. The reason is that noise makes most

contribution to the attribution pixel value in these cases.

Therefore, we only select the top pixels based on their

attribution values when minimizing the attribution dis-

tance between quantized and full-precision networks, so

that the informative localization ability instead of noise

in the full-precision networks is mimicked by quantized

ones. In order to assign the optimal value of k for se-

lecting top-k pixels in attribution imitation learning,

we conducted ablation studies with respect to k and

report the accuracy-complexity trade-offs in Table 12.

Small k fails to acquire sufficient information on the

full-precision attribution, and large k brings much noise

in attribution imitation. Both of them degrade the trade-

off between the accuracy and model complexity.

H. Details of Small Datasets for Quantization

Policy Search

We introduce the datasets that we carried experiments

on. For quantization policy search, we employed the

small datasets including CIFAR-10 (Krizhevsky et al.,

2009), CIFAR-100 (Krizhevsky et al., 2009), Cars (Krause

et al., 2013), Flowers (Nilsback and Zisserman, 2008),

Aircraft (Maji et al., 2013), Pets (Parkhi et al., 2012)

and Food (Bossard et al., 2014). CIFAR-10 contains

60, 000 images divided into 10 categories with equal

number of samples, and CIFAR-100 contains the same

number of images which are evenly distributed in 100

classes. Flowers has 8,189 images spread over 102 flower

categories. Cars includes 16, 185 samples with 196 types

at the level of maker, model and year, and Aircraft con-

tains 10, 200 collected images with 100 samples for each

of the 102 aircraft model variants. Pet was created with

37 dog and cat categories with 200 images for each class,

and Food contains 32, 135 high-resolution food photos

of menu items from the 6 restaurants.

I. Rank Errors for Different Settings for R-GMPQ

Because the full-precision attribution can be affected by

noise in network training, the attribution rank may fail

to reflect true region importance especially for attribu-

tion pixels with similar values. Therefore, we leverage

the smoothing techniques to eliminate the noise in the

attribution. Since the rank of the true attribution with-

out noise is intractable, we randomly sampled five seeds

to train the full-precision networks and used their av-

erage attribution as the approximated true attribution.

We have reported the attribution rank difference on Im-

ageNet with ResNet18 in Table 13. By comparing Table

13 with Table 2, we know that low attribution rank dif-

ference leads to better accuracy-complexity trade-offs.

J. Explanation of Attribution Similarity for Gen-

eralizable Quantization Policy Search

Let us assume that QD and QS are respectively the

optimal quantization policies searched on the data in

deployment and on our tractable small datasets. The
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Table 13 The average rank difference between quantized attribution and approximated true attribution with different smooth-
ing techniques and settings.

Hierarchies RR ratio γ = 0.01 γ = 0.05 γ = 0.1 γ = 0.5
One-level - 15.98 12.23 13.91 16.42

Two-level
2 17.78 13.02 14.25 17.73
4 17.69 13.71 14.33 18.24

Three-level
2 17.93 13.57 17.12 18.59
4 18.87 14.10 17.34 18.72

Five-level 2 19.25 18.41 19.73 20.12

generalization ability of the acquired quantization pol-

icy can be demonstrated by the difference between the

expected loss of models quantized by QD and QS :

J = ||L(QD, Xval)− L(QS , Xval)|| (19)

whereXval represents the distribution of validation data

in deployment. L(Q,X) means the loss function of the

neural networks with the quantization policy Q on the

dataset X. Smaller J indicates higher generalization

ability of our policy QS because the loss is more simi-

lar to that of the model quantized by QD. We expand

J as follows:

J = ||L(QD, Xval)− L(R,Xval) + L(R,Xval)−
L(R,Xsma) + L(R,Xsma)− L(QS , Xsma)+

L(QS , Xsma)− L(QS , Xval)||
⩽ ||L(QD, Xval)− L(R,Xval)||+ ||L(R,Xsma)−
L(QS , Xsma)||+ ||

(
L(R,Xval)− L(R,Xsma)

)
+(

L(QS , Xsma)− L(QS , Xval)
)
||

= J1 + J2 + J3 (20)

The first term J1 is the intractable loss gap for valida-

tion data in deployment caused by quantization, and

it can be regarded as a constant C0. The second term

J2 corresponds to the loss gap for training data of our

small datasets caused by quantization, and we have

minimized this term in our method by optimizing the

task risk. The third term J3 can be rewritten as follows:

J3 = ||
∫ Xval

Xsma

∂L(R,X)

∂X
dX −

∫ Xval

Xsma

∂L(QS , X)

∂X
dX||

⩽
∫ Xval

Xsma

||∂L(R,X)

∂X
− ∂L(QS , X)

∂X
||dX (21)

where ∂L(R,X)/∂X and ∂L(QS , X)/∂X demonstrate

the attribution of full-precision and quantized models

respectively. Since we require the similar attribution be-

tween quantized and full-precision models, J3 is also

minimized so that the generalization ability of the ac-

quired quantization policy is enhanced.
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