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Abstract—In this paper, we propose extremely low-precision vision transformers called Quantformer for efficient inference.
Conventional network quantization methods directly quantize weights and activations of fully-connected layers without considering
properties of transformer architectures. Quantization sizably deviates the self-attention compared with full-precision counterparts, and
the shared quantization strategy for diversely distributed patch features causes severe quantization errors. To address these issues, we
enforce the self-attention rank in quantized transformers to mimic that in full-precision counterparts with capacity-aware distribution for
information retention, and quantize patch features with group-wise discretization strategy for quantization error minimization.
Specifically, we efficiently preserve the self-attention rank consistency by minimizing the distance between the self-attention in
quantized and real-valued transformers with adaptive concentration degree, where the optimal concentration degree is selected
according to the self-attention entropy for model capacity adaptation. Moreover, we partition patch features in different dimensions with
differentiable group assignment, so that features in different groups leverage various discretization strategies with minimal rounding
and clipping errors. Experimental results show that our Quantformer outperforms the state-of-the-art network quantization methods by
a sizable margin across various vision transformer architectures in image classification and object detection. We also integrate our
Quantformer with mixed-precision quantization to further enhance the performance of the vanilla models.

Index Terms—Vision transformers, network quantization, self-attention rank consistency, group-wise discretization, differentiable
search

✦

1 INTRODUCTION

T RANSFORMER [47], [1], [14] has revolutionized natural
language processing (NLP) because of the flexibility in

modeling long-range dependencies. Inspired by the great
success, vision transformers were widely studied to achieve
promising performance in image classification [15], [46],
[35], object detection [4], [12], semantic segmentation [63],
[38] and many others. However, the heavy storage and com-
putational cost obstructs the vision transformers from being
deployed in realistic applications with limited resources
such as mobile phones and robots. Hence, it is desirable to
design vision transformers with fewer parameters and more
lightweight architectures.

Recently, several compression techniques for convolu-
tional neural networks have been proposed including prun-
ing [45], [23], [21], quantization [24], [9], [61], low-rank de-
composition [26], [40], [25] and efficient architecture design
[28], [55], [43]. Among these methods, quantization leads to
extremely high compression ratio for memory saving and
computation acceleration due to the sizable bitwidth re-
duction and low-precision multiply-accumulate operations
(MACs). However, directly quantizing the weights and ac-
tivations in vision transformers ignores the properties of
transformer architectures. First, low-precision quantization
deviates the self-attention in quantized transformers from
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that in the full-precision counterparts, which leads to in-
accurate patch dependencies for subsequent feature extrac-
tion. Second, conventional network quantization methods
utilize the discretization function with the same thresholds
and rounding points for patch features from different di-
mensions. Since the real-valued patch features distribute
diversely across various dimensions, the shared quantiza-
tion policies result in sizable rounding and clipping errors
respectively for narrowly and widely distributed features.
Therefore, the deviated self-attention and the considerable
quantization loss both significantly degrade the perfor-
mance of low-precision vision transformers compared with
their full-precision counterparts.

In this paper, we present a Quantformer approach to
learn extremely low-precision vision transformers for ef-
ficient inference. Unlike existing methods which directly
quantize fully-connected layers without considering the
properties of transformer architectures, we enforce the self-
attention rank in quantized transformers to mimic that in
full-precision counterparts with capacity-aware distribution
for information retention. We also discretize the patch fea-
tures in different dimensions with group-wise quantization,
where patch features in similar distribution are discretized
with the shared quantization strategy. Therefore, the self-
attention consistency between quantized and real-valued
transformers is preserved, and the quantization errors re-
sulted from diversely distributed patch features are al-
leviated with negligible computation overhead. Figure 1
demonstrates the difference between Quantformer and the
conventional network quantization methods. More specif-
ically, we minimize the rank difference between the self-
attention in quantized and full-precision transformers for
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Figure 1. The difference between Quantformer and the conventional
network quantization methods. (a) The self-attention in the conven-
tional quantized vision transformers and our Quantformer, where the
full-precision self-attention is also demonstrated for reference. The
color darkness in the same row depicts the self-attention ranks across
patches, where dark colors stand for ranks in top positions. Conventional
quantization methods deviate the self-attention rank from that in full-
precision transformers, and leads to inaccurate patch dependencies
for feature extraction. On the contrary, our Quantformer preserves the
self-attention rank consistency via the presented capacity-aware self-
attention imitation. (b) The difference between the shared and group-
wise quantization strategies, where the former causes more significant
quantization loss including rounding and clipping errors for the diversely
distributed patch features. Our Quantformer partitions the patch features
in different dimensions according to the feature distribution, where quan-
tization strategies with various thresholds and rounding points are em-
ployed for features in different groups with alleviated quantization errors.
Different colors in the patch feature demonstrate features in different
dimensions, and those belonging to different groups are denoted by
various indexes.

consistency preservation. To solve the NP-hard problem of
rank consistency regularization, we alternatively minimize
the distance between the self-attention in quantized trans-
formers and the full-precision counterparts with adaptive
concentration degree. The concentration degree is optimally
selected based on the self-attention entropy, so that the
self-attention rank consistency is preserved without the
mismatch between the self-attention distribution and the
limited capacity of the quantized vision transformers. We ef-
ficiently partition patch feature dimensions by differentiable

group assignment, where features in different groups utilize
various quantization strategies. Patch features represent the
linear layer output for each patch, whose dimension is the
number of elements. Features in different dimensions repre-
sent various elements within one patch as shown by differ-
ent colors of patch features in Figure 1(b). Those belonging
to different groups are denoted by various indexes in patch
features of Figure 1(b). As a result, the optimal thresh-
olds and quantization points are selected for full-precision
patch features with alleviated clipping and rounding errors.
Compared with the state-of-the-art network quantization
methods, experiments on ImageNet [13] for image classi-
fication and COCO [31] for object detection show that our
Quantformer achieves higher performance with negligible
computational overhead across various vision transformer
architectures including DeiT [46] and Swin Transformer [35].
Moreover, the techniques presented in Quantformer can
be integrated with mixed-precision quantization to further
enhance the vanilla models.

The contributions of this work are summarized as fol-
lows:

• To the best of our knowledge, we propose the first low-
precision quantized vision transformers whose weights
and activations are represented in less than four bits.

• We propose the capacity-aware self-attention imitation
to efficiently preserve the consistency between the self-
attention rank in quantized and full-precision transform-
ers, so that the long-range dependency is accurately
mined without capacity insufficiency.

• We present the group-wise quantization to discrete patch
features in different dimensions with the optimal thresh-
olds and quantization points, where the clipping and
rounding errors in quantized transformers are alleviated
with negligible computation overhead.

• We conduct extensive experiments on image classifica-
tion and object detection, and the results consistently
show that our Quantformer outperforms the state-of-the-
art network quantization methods by a sizable margin.
We also integrate the proposed techniques to mixed-
precision quantization in order to further enhance the
vanilla models.

2 RELATED WORK

In this section, we briefly review three related topics includ-
ing 1) network quantization, 2) efficient vision transformers
and 3) differentiable search.

2.1 Network Quantization

In order to reduce the storage and computational complex-
ity, network quantization has aroused broad interest in com-
puter vision to enable the deployment in mobile devices.
Existing network quantization methods can be categorized
into two types: binary networks and models in multiple bits.
For the former, weights and activations are represented by
binary numbers [52], [51], where the multiply-accumulate
(MAC) operations in full-precision networks are substituted
by xnor-bitcount. Hubara et al. [24] first presented binary
neural networks which were optimized by straight-through
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estimators (STE), and Rastegari et al. [42] scaled the bina-
rized weights and activations for quantization error mini-
mization. Liu et al. [36] added shortcut connections between
adjacent layers to enhance the representation ability caused
by binarization. Wang et al. [52] mined the channel-wise in-
teractions in convolutional neural networks to eliminate the
inconsistent signs between the quantized and full-precision
feature maps. Because the huge performance gap between
the binary networks and their full-precision counterparts
limits the model practicability, networks in multiple bits
are proposed to achieve better performance. Choi et al.
[9] learned the activation clipping thresholds for optimal
quantization scale selection, and Zhang et al. [61] further
optimized the quantizer basis and encoding to minimize
the expected quantization errors. Lee et al. [28] scaled each
gradient element computed by STE to match the direction
of objective and the gradient without discretization errors.
Aiming to achieve better accuracy-complexity trade-offs,
mixed-precision quantization [48], [3], [53] selects the op-
timal bitwidth for each network component to adaptively
remove the network redundancy. To alleviate quantization
errors, Zhao et al. [62] duplicated and halved outlier chan-
nels to move the outliers towards distribution center with
functional identity, and Liu et al. [33] approximated the full-
precision weight tensors by quantized counterparts with
the optimal basis number. Nevertheless, directly quantizing
weights and activations of vision transformers with conven-
tional network quantization methods fails to consider the
properties of transformer architectures. The self-attention in
quantized transformers is deviated from that in the full-
precision counterparts, and the quantization policy with
shared thresholds and discretization points for patch fea-
tures that distribute diversely across channels causes sizable
clipping and rounding errors. Therefore, the low-precision
vision transformers underperform the full-precision coun-
terparts significantly.

2.2 Efficient Vision Transformers

Inspired by the great success of transformers [47] in the
NLP domain [14], [1], [34], vision transformers [15], [46],
[35] were proposed to mine global dependencies with self-
attention mechanism. Because of the extremely heavy stor-
age and computational cost, efficient vision transformers
are desirable for applying the large pretrained models in
realistic applications. To address this, efficient architecture
design [17], [5], [58], architecture search [6], [8], sparse at-
tention [7], [11], [57], [50], [41] and network quantization are
presented to reduce the storage and computational cost. To
construct lightweight architectures of vision transformers,
Fan et al. [17] utilized the multiscale feature pyramid fusion
to reduce the spatial resolution of top layers. Chen et al.
[5] observed that self-attention in consecutive layers was
similar, so that they employed the shared self-attention in
neighboring layers to decrease the computational cost. For
architecture search, Chen et al. [6] acquired the optimal
global and local dependency learning modules hierarchi-
cally by evolutionary algorithm to achieve better accuracy-
complexity trade-offs. Sparse attention aims to enhance the
efficiency of dense self-attention by removing redundant
patches. Chu et al. [11] proposed the spatially separable

self-attention that alternatively mined the global and lo-
cal dependencies with significant computational complexity
decrease. Moreover, Rao et al. [41] pruned unimportant
tokens according to the input to achieve fine-grained re-
source assignment for samples in various hardness. Since
quantization can achieve extremely high compression ratio,
quantized transformers [60], [44], [27] were presented in
NLP domain. However, these methods are incompatible
with vision tasks and result in obvious performance degra-
dation, because the model capacity changes significantly
with different bitwidths and feature distribution across
channels varies obviously in quantized vision transformers.
To quantize vision transformers, Liu et al. [37] and Yuan
et al. [59] designed post-training quantization framework
by rescaling the latent weights of quantized layers with
a small calibration set. Although [37] presented ranking-
aware quantization for self-attention in vision transformer
discretization, the applied hinge loss fails to consider the
model capacity variance and leads to capacity insufficiency
for quantized vision transformers. Moreover, the high com-
plexity of hinge loss computation causes extremely high
training cost. Moreover, sizable performance degradation
is observed in the post-training quantization framework
for extremely low-precision vision transformers, which pre-
vents them to be deployed in mobile devices with limited
resources.

2.3 Differentiable Search
Aiming at efficiently finding the optimal solution in large
search space, differentiable search has been widely adopted
in many search problems including network architecture
search [32], [10], [30], mixed-precision quantization [3], [53],
[49] and feature learning [20], [54]. Differentiable search
methods usually regard each choice in the search space as
a branch of the superstructure, and update the component
importance via gradient descent during the search phase.
When the search stage completes, the superstructure is
discretized by preserving the components with the largest
branch importance weight to obtain the optimal solution.
For network architecture search, Liu et al. [32] relaxed the
architecture selection to be continuous where the branch
importance and supernet weights were trained jointly, and
they also leveraged the difference approximation method to
effectively solve the bi-level optimization. Moreover, Chu et
al. [10] presented the competitive mechanism to eliminate
the unfair advantages of skipping connections in differ-
entiable architecture search, and also added the zero-one
loss in the overall objective to minimize the discretization
errors of architecture discretization. For mixed-precision
quantization, Cai et al. [3] assigned different bitwidths for
weights and activations in various branches of the supernet,
and imposed the complexity constraint that increased the
importance of low-precision branches for model compres-
sion. Wang et al. [53] observed that locating the attribution
correctly was a general ability for accurate visual analysis
despite of the model bitwidths, and they preserved the
attribution rank consistency between the quantized and
full-precision networks during the differentiable bitwidth
search. For feature aggregation, Guan et al. [20] presented
the bridge loss for feature weight optimization, and en-
hanced the knowledge distillation via the bi-directional



4

path between teacher and student models. To acquire the
optimal partition of patch features in different channels, we
generalized the differentiable search strategies to partition
assignment of group-wise quantization.

3 APPROACH

In this section, we first briefly review network quantization
that leads to extremely high compression ratio for memory
saving and computation acceleration. Then we introduce
the self-attention rank preservation for quantized trans-
formers, where the capacity-aware self-attention imitation is
presented for efficient implementation. Finally, we demon-
strate the group-wise quantization strategy for patch feature
discretization, and the differentiable search methods are
employed for efficient partition assignment with minimal
quantization errors.

3.1 Network Quantization
Network quantization decreases the bitwidths of weights
and activations to save storage cost and accelerate infer-
ence. Let us denote Xr as the real-valued matrix in neural
networks including weights and activations, and the k-bit
rounding function Qk discretizes elements in Xr to the
nearest quantization point to form the quantized matrix Xq :

xq
i = Qk(x

r
i ) ∈ {q0, q1, ..., q2k−1} (1)

where xr
i and xq

i represent the ith element in the real-valued
and quantized matrix respectively, and qj means the jth
quantization point. The uniform quantization scheme [48],
[29] is considered due to the highly efficient implementa-
tion on the hardware. The distance between any adjacent
quantization points is equal in uniform quantization, which
is denoted as ∆k for k-bit quantization. Given the upper
and lower bounds of the quantization range u and l, the
quantization interval ∆k is defined as u−l

2k−1
. The quantized

value is determined for each real-valued element by assign-
ing the first and last rounding point to the minimum and
maximum of the quantization range respectively. The real-
valued elements larger than u or smaller than l are set to
u and l respectively so that all elements are clipped into
the quantization range. The quantized elements in uniform
rounding can be depicted as follows:

xq
i = Qk(x

r
i ) = ∆k · (xn

i − b) (2)

where xn
i = [

x̂r
i−l
∆k

] stands for the rounding index of the real-
valued element xr

i , and b demonstrates the quantization bias
index. In the definition of rounding index, x̂r

i represents the
clipped elements of xr

i , and [x] illustrates the nearest inte-
ger around x. We replace the multiply-accumulate (MAC)
operations in full-precision neural networks with efficient
integer arithmetic in quantized models:

WqAq = Qk(Wr)Qk(Ar) = ∆W
k ∆A

k (WNAN ) (3)

where Wq and Aq are the quantized weights and activa-
tions, and Wr and Ar mean their full-precision counter-
parts. The quantization bias index term is omitted for clarity.
The quantization function Qk(x) indicates that we leverage
the quantization strategy shown in (2) for each element
in matrix x. The distance between adjacent quantization
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Figure 2. The left figure shows the Shannon Entropy of the self-attention
in DeiT-T with different bitwidths on ImageNet, where the converged
models are leveraged to evaluate the average entropy across various
rows, layers and samples. The middle and right figures demonstrate the
example of self-attention with different entropy, while the self-attention
rank keeps the same. The bitwidth reduction causes the decreased
self-attention entropy, because the degraded model capacity enforces
the quantized transformers to focus on the most important patches
without self-attention divergence. In order to accurately mine the long-
range dependencies among patches without capacity insufficiency, we
preserve the self-attention rank consistency instead of minimizing the
self-attention distance directly (best viewed in color).

points in k-bit quantization for weights and activations are
represented by ∆W

k and ∆A
k respectively, and WN and AN

demonstrate the rounding index matrix for weights and
activations. We only quantize the linear layers of vision
transformers in low-precision, and assign the bitwidth of
query, key, value tensors to eight in order to avoid severe
performance drop. Following [37], [56], [59], we apply float
layernorm and softmax layers in vision transformers as they
are very sensitive to quantization.

However, directly quantizing weights and activations in
vision transformers without considering the architectures
causes two issues. First, low-precision quantization deviates
the self-attention in quantized transformers from that in the
full-precision counterparts, which leads to inaccurate patch
dependencies for feature extraction. Second, leveraging the
discretization strategy with the same thresholds and quan-
tization points for diverse patch features causes significant
rounding and clipping errors. As a result, the inconsistent
self-attention and discretization errors both result in sizable
performance degradation of quantized vision transformers.

3.2 Preserving Self-attention Rank Consistency with
Capacity-aware Distribution

Low-precision quantization deviates the self-attention in
quantized vision transformers from that in the full-precision
counterparts, which results in inaccurate focus for patch
dependency mining during feature extraction. Therefore,
the information retention is harmed in quantized vision
transformers with significant performance degradation. In
order to maintain the accurate focus for long-range depen-
dency learning, we preserve the self-attention rank consis-
tency between quantized and full-precision vision trans-
formers. In this section, we first introduce the capacity-
aware self-attention rank preservation for quantized vision
transformers, and then detail the efficient implementations
via capacity-aware self-attention imitation.

3.2.1 Capacity-aware Self-attention Rank Preservation
We first revisit the attention mechanism in vision transform-
ers. The flattened feature maps in the lth layer are denoted
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Figure 3. An example showing the lp norm of self-attention with different
p, where the rank remains unchanged and the concentration degree
varies. Larger p leads to more concentrated self-attention and vice versa
(best viewed in color).

as X l, and the corresponding self-attention Al for the lth
layer can be obtained via the query Ql and key Kl:

Al = QlKl = XlW
Q
l WK

l

T
XT

l (4)

where WQ
l and WK

l are the query and key computation
matrix in the lth layer. The output of multi-head self-
attention (MHSA) module can be written in the following:

MHSA(X l) = σ(
1√
dl
Al)X

lW V
l WO

l (5)

where σ(·) means the softmax function and dl is the dimen-
sion of the patch features. W V

l and WO
l respectively rep-

resent the value and output computation matrix. With the
layernorm layers and identity shortcut, the multi-head self-
attention and multi-layer perceptron modules are stacked
iteratively for feature extraction.

Self-attention is crucial in vision transformers as it mea-
sures the patch importance in the forward pass of MHSA
modules. Quantizing weights and activations of fully-
connected layers destroys the informative self-attention
learned in full-precision vision transformers, and the patch
importance order is significantly changed in the forward
pass of feature extraction. Therefore, we aim to preserve
the self-attention consistency between the quantized vision
transformers and their full-precision counterparts in order
to maintain the feature informativeness. Figure 2 shows the
average Shannon Entropy of the self-attention in the DeiT-
T architecture with different bitwidths. The vision trans-
former in lower precision obtains self-attention in smaller
entropy due to the limited carried information, which indi-
cates more concentrated self-attention distribution. As the
network capacity between the quantized and full-precision
models is huge, directly minimizing the distance between
the self-attention in quantized transformers and that in the
full-precision counterparts fails to remove the redundant
information in the compressed model, while causes capacity
insufficiency with degraded performance. Therefore, we
instead preserve the self-attention rank consistency between
the quantized and full-precision transformers with capacity-
aware distribution, which enables the quantized transform-
ers to focus on important patches while adaptively adjust
the self-attention distribution without capacity insufficiency.
Figure 2 also depicts intuitive examples of self-attention
with the same rank and different entropy, where self-
attention in low entropy with concentrated distribution is
acquired for models in inferior capacity. We define the self-

attention rank consistency loss Jsrc for model training in the
following form:

Jsrc =
∑
l

∑
m

∑
n

||r(Al
q,mn)− r(Al

r,mn)||2

s.t.
∑
n

Al
q,mn logA

l
q,mn = Cl

∑
n

Al
r,mn logA

l
r,mn (6)

where Al
q,mn represents the element in the mth row and

nth column of the self-attention matrix in the lth layer of
quantized vision transformers, and Al

r,mn demonstrates the
corresponding element in the full-precision models. r(x) de-
picts the rank of the element x in self-attention, which equals
to k if the element x is the kth largest among all others in
the same row. The layer-wise hyperparameter Cl reveals the
capacity difference between the quantized and full-precision
vision transformers for the self-attention in the lth layer. By
enforcing the self-attention rank in the quantized models to
mimic that in the full-precision counterparts, the important
patches are correctly focused without capacity insufficiency
so that the long-range dependencies among patches are
accurately mined for informative feature extraction.

3.2.2 Capacity-aware Self-attention Imitation

Since directly minimizing the inconsistency between self-
attention ranks in quantized and full-precision transformers
is NP-hard, we present capacity-aware distribution self-
attention imitation to efficiently preserve the self-attention
rank consistency. The range of self-attention is set to [0, 1]
where the element summation over each row equals to one.
Therefore, the lp norm of self-attention can adjust the self-
attention divergence without changing the rank by modify-
ing the value of p. Figure 3 shows an example of the lp norm
of self-attention with different p, where the rank remains
the same and the concentration degree for self-attention
varies. In order to efficiently preserve the self-attention
rank consistency between the quantized and full-precision
transformers, we minimize the difference between the self-
attention in quantized transformers and the lp norm of that
in full-precision models. The self-attention rank consistency
loss can be rewritten as follows for efficient implementation
during the optimization process:

Jsrc =
∑
l

∑
m

∑
n

||Al
q,mn −

(Al
r,mn)

pl∑
n(A

l
r,mn)

pl
||2 (7)

where pl means the hyperparameter p of the lp norm in the
lth layer, and large pl leads to concentrated self-attention
and vice versa. As the representational capacity of each layer
in the vision transformer varies, the hyperparameter pl in
the self-attention rank consistency loss should be assigned
with larger value for quantized layers with lower capac-
ity. The Shannon Entropy of the self-attention depicts the
amount of carried information that also reveals the network
capacity. Denoting the layer-wise Shannon Entropy of the
self-attention in the lth quantized and full-precision trans-
former layers as El

q and El
r respectively, the hyperparameter

pl can be decided as follows:

pl =
El

r

El
q

=

∑
m

∑
n A

l
r,mn logA

l
r,mn∑

m

∑
n A

l
q,mn logA

l
q,mn

(8)
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Figure 4. The self-attention visualization in the top layer of the full-
precision transformer, the conventional quantized transformer and our
Quantformer, where the DeiT-T architecture with 4-bit weights and ac-
tivations is applied. The darker color represents larger value and vice
versa. Conventional quantization methods deviate the self-attention rank
from that in full-precision transformers, while our Quantformer preserves
the self-attention rank consistency with capacity-aware distribution.

The hyperparameter pl becomes large when the self-
attention entropy in the lth layer of the quantized models
is much smaller than that in the full-precision transformers.
The strong correlation between (6) and (7) is verified in
Appendix C via theoretical proof, model statistics and ab-
lation studies. Specifically, pl is assigned to one for equal El

q

and El
r , which indicates the comparable model capacity for

the lth layer in quantized and full-precision transformers.
In this case, directly minimizing the distance between the
self-attention in the lth layer of quantized and full-precision
models results in accurate long-range dependency mining.
We feed forward the input samples to pre-trained full-
precision vision transformers during the training process
to obtain Al

r,mn across all layers. By optimizing the self-
attention rank consistency loss with capacity-aware distri-
bution, the quantized transformers correctly focus on im-
portant patch relation without capacity insufficiency. Figure
4 visualizes the self-attention in full-precision vision trans-
former, conventional quantized vision transformer and our
Quantformer, where our Quantformer keeps the similar self-
attention rank with that in the full-precision counterparts.
Meanwhile, the concentration degree of the self-attention
in our Quantformer is adaptively adjusted according to the
network capacity in order to prevent capacity insufficiency.

3.3 Group-wise Quantization for Patch Features

Existing network quantization methods directly discretize
the weights and activations in the same strategy, which
leverages shared clipping thresholds and quantization
points for all elements in a layer. Although the shared quan-
tization strategy is efficient on hardware, it significantly
degrades the performance of vision transformers due to the
large clipping and rounding errors for diversely distributed
patch features. In order to alleviate the quantization loss in
vision transformers, we present the group-wise quantiza-
tion where patch features in the same partition utilize the
quantization strategy with shared thresholds and quanti-
zation points. We first describe the details of group-wise
quantization, and then demonstrate the differentiable search
framework for optimal group assignment of patch features
in different dimensions.

Minimum Maximum Percentile (0.01) Percentile (0.99)

Figure 5. The minimum, maximum, percentile at 0.01 and percentile at
0.99 for patch features in different dimensions in top layers (top row) and
bottom layers (bottom row) of vision transformers, where the architecture
of 4-bit DeiT-T is applied. The horizontal axis represents the value
for patch features in different dimensions and the vertical axis means
the corresponding frequencies. Since the range of patch features in
different dimensions varies significantly regardless of layers, leveraging
the shared discretization strategy for them yields sizable quantization
errors.

Table 1
The number of parameters and bit-operations (BOPs) of vision

transformers for image classification on ImageNet with layer-wise
quantization and channel-wise quantization respectively. Param.
depicts the number of network parameters (M) and BOPs is the

bit-operations (G).

Quantization DeiT-T DeiT-S DeiT-B
Param. BOPs Param. BOPs Param. BOPs

Layer-wise 0.69 34.9 2.89 103.2 11.04 340.3
Channel-wise 0.84 109.8 3.04 404.4 11.19 1545.0

Increase 21.7% 214.6% 5.2% 291.9% 0.8% 354.0%

3.3.1 Group-wise Quantization

Conventional quantization approaches [48], [9] utilize
sharable parameters for each layer as the discretization
range thresholds. However, the diversely distributed patch
features across different dimensions disable the vision trans-
former to learn compatible thresholds with acceptable quan-
tization errors. Figure 5 illustrates the minimum, maximum,
percentile at 0.01 and percentile at 0.99 of real-valued
elements in patch features across all dimensions, which
distribute very diversely regardless of the layer indexes.
Therefore, the shared quantization strategy across feature
dimensions results in high quantization errors, because
small quantization range causes sizable clipping loss and
the large one leads to significant rounding errors.

Inspired by channel-wise quantization [39], we adopt
different discretization strategies for features in various
dimensions to alleviate quantization errors. However, em-
ploying an unique quantization strategy for features in
each dimension leads to heavy storage and computation
overhead because of the significantly increased rounding
functions. Table 1 demonstrates the number of parameters
and bit-operations (BOPs) of vision transformers for im-
age classification on ImageNet with layer-wise quantization
and channel-wise quantization respectively, where channel-
wise quantization increases the storage and computational
complexity significantly. Hence, directly leveraging channel-
wise quantization for vision transformers to reduce the
quantization errors is not feasible. Meanwhile, quantizing
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features whose optimal quantization range is similar with
the same discretization strategy can efficiently achieve better
trade-offs between the quantization errors and model com-
plexity. We present group-wise quantization for patch fea-
tures in different dimensions, so that the quantization errors
for the diversely distributed elements are alleviated without
sizably additional storage and computational complexity.
We also demonstrate the accuracy-efficiency trade-offs of
layer-wise, channel-wise and group-wise quantization in
Appendix E.

Let us assume features from different dimensions are
divided into C groups, and the activation quantization
strategy can be written as follows by modifying (2) into a
group-wise manner:

zqi = Q
c(i)
k (zri ) = ∆

c(i)
k ([

ẑri − lc(i)

∆
c(i)
k

]− bc(i)) (9)

where zqi and c(i) respectively represent the quantized
feature elements and the group assignments for the ith
dimension, and Q

c(i)
k demonstrates the kth-bit rounding

function of the c(i)th group. Meanwhile, ẑir is the clipped
full-precision feature element with the original real-valued
element zir in the ith dimension, where the original ele-
ment is clamped into the activation range with the upper
and lower bounds uc(i) and lc(i). Moreover, ∆

c(i)
k and

bc(i) respectively depict the distance between adjacent k-bit
quantization points and the quantization bias index for the
elements assigned to the c(i)th group. Figure 6 demonstrates
an example of shared and group-wise quantization policy
on feature distribution for different dimensions, where the
latter selects the optimal quantization range for features in
different dimensions to alleviate quantization errors.

As the initialization of quantization range thresholds
influences the model performance, we adopt the percentile
of feature distribution as the initial quantization range
thresholds. We randomly partition the patch features in
different dimensions into C groups for quantization range
initialization, where each group contains equal numbers of
elements. The lower bound lc and the upper bound uc for
the cth group is defined as follows:

lc = {zri ∈ Zc|rc(zri ) = Np0}
uc = {zri ∈ Zc|rc(zri ) = N(1− p0)} (10)

where Zc means all feature elements assigned to the cth
group and rc(·) is the ranking function in Zc. Meanwhile,
N stands for the number of feature elements in each group
and p0 ∈ [0.5, 1] is the hyperparameter that indicates the
percentile. We select the element that ranks among the p0
and 1− p0 percentile of feature elements in the cth group as
the initialized quantization range, so that the outliers with
extreme values that result in large quantization errors can
be clipped.

3.3.2 Differentiable Search for Group Assignment
Properly partitioning features in different dimensions is
critical for group-wise quantization, as discretizing elements
in similar distribution with the same quantization strategy
can reduce quantization errors without heavy storage and
computational overhead. Nevertheless, the group assign-
ment for patch features across different dimensions faces

(a) Shared Quantization Strategy

(b) Group-wise Quantization Strategy

Figure 6. The feature distribution and the quantization thresholds of (a)
the shared quantization strategy and (b) the group-wise quantization
strategy for four different dimensions in a layer, where each column
demonstrates the feature element statistics of one dimension. The 4-
bit DeiT-T model is leveraged for the visualization. The horizontal axis
stands for the value of the feature elements, and the vertical axis means
the corresponding frequencies. The vertical lines demonstrate the upper
and lower bound of the quantization range. The shared quantization
strategy leads to large rounding errors for features in concentrated distri-
bution and causes high clipping errors for those in divergent distribution.
On the contrary, the group-wise quantization selects the optimal quan-
tization range for features in each dimension according to the feature
distribution with negligible computational and storage cost, where the
rounding and clipping errors are both alleviated.

two challenges with significantly increased search cost. First,
enumerating all assignment permutation to acquire the op-
timal solution is NP-hard. Second, the feature distribution
changes during the training process, which requires the
group assignment to be updated dynamically. In order
to efficiently investigate the distribution similarity among
features in various dimensions for optimal group assign-
ment, we employ the differentiable search framework [32],
[3] to partition the features in different dimensions. We
discretize each feature element by C quantization functions
with different thresholds and rounding points in parallel,
where C represents the number of partitions in group-wise
quantization. The quantized counterparts from different
quantization functions are summed with various impor-
tance weights to form the intermediate activations. Figure 7
depicts the pipeline of the differentiable search framework
for optimal group assignment acquisition. The feed-forward
propagation for each layer is written as follows:

zqi =
C∑

c=1

πcQk(z
r
i ) =

C∑
c=1

πc∆
c(i)
k · [

ẑri − lc(i)

∆
c(i)
k

] (11)

where πc represents the importance weight of the cth quan-
tization function. Since discretizing the group assignment
from the continuous space usually causes non-negligible
discrepancy, we aim to minimize the entropy of the branch
importance weights in group assignment with the discrep-
ancy minimization loss:

Jdm = − 1

C

C∑
c=1

πc log πc (12)

The discrepancy minimization loss enforces the branch im-
portance weights to approach zero or one, so that the feature
discrepancy caused by the discrete group assignment after
search can be alleviated.

We jointly optimize the network parameters, the quan-
tization thresholds and the importance weights during the



8

Patch 
Feature
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Full-precision Quantized

Feature Distribution

OutliersOutliers

Figure 7. The differentiable search framework for group assignment of
patch features in various dimensions. Patch features in each dimen-
sion are discretized by several quantization strategies with different
thresholds and rounding points in parallel, and the quantized features
are summed with various importance weights to form the output. By
jointly optimizing the network parameters, the importance weights and
the quantization thresholds, the quantization strategy with the largest
importance weight after optimization is selected.

differentiable search process until convergence or achieving
the maximum iteration steps, where the overall learning
objective can be written as follows:

J = Jtask + α1Jsrc + α2Jdm (13)

where Jtask means the task loss, and α1 and α2 stand for
the hyperparameters that control the importance of the self-
attention rank consistency loss and discrepancy minimiza-
tion loss. When the optimization completes, we discretize
elements in different dimensions with the quantization func-
tion that is evaluated with the highest importance weights.
Finally, we finetune the quantized transformers with the
optimal feature partitions in group-wise quantization via
the objective only composed of the task loss and the self-
attention consistency loss.

4 EXPERIMENTS

In this section, we conducted extensive experiments to eval-
uate our methods on ImageNet for image classification and
on COCO for object detection. We first briefly introduce the
datasets and the implementation details, and then verify the
effectiveness of the presented self-attention rank preserva-
tion for information retention and group-wise quantization
for discretization error alleviation via ablation study. Finally,
we compare our Quantformer with the state-of-the-art net-
work quantization methods on vision transformers to show
the superiority.

4.1 Datasets and Implementation Details

We introduce the datasets that we applied and the data
preprocessing techniques in the following:

ImageNet: ImageNet (ILSVRC2012) contains approx-
imately 1.2 million and 50k images from 1000 classes
for training and validation. During the training stage, we
cropped a 224× 224 random region from the resized image
whose shorter side was 256 in the forward pass. Meanwhile,
we applied the 224×224 center crop in inference. Moreover,
we scaled and biased all pixels into the range [0, 1]. We used
the top-1 and top-5 classification accuracies as the evalua-
tion metric, and leveraged the number of parameters and
BOPs as the storage and computational cost respectively.
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(a) (b)
Figure 8. (a) The top-1 classification accuracy with varied hyperparame-
ter α1 in the overall objective for quantized DeiT-T in different bitwidths.
(b) The performance of Quantformer with fixed pl assignment in the
self-attention consistency loss, where pl was set to 1, 2, 3, 4 and 5
respectively.

Table 2
The performance w.r.t. different value assignment strategies for

dynamic pl in the self-attention rank consistency loss. pl is ensured to
be one when the entropy of self-attention in quantized and full-precision

transformers is equal.

SRC Loss W/A-bit Top-1 Top-5

Er/Eq

2/2 60.7 84.0
3/3 65.2 87.0
4/4 69.9 89.7

√
Er/Eq

2/2 59.5 83.1
3/3 64.0 86.6
4/4 69.1 89.5

exp(Er/Eq)

2/2 58.7 82.8
3/3 64.3 86.6
4/4 69.0 89.2

COCO: The images in the COCO dataset were collected
from 80 different categories, and our experiments were
conducted on COCO 2017. We trained our model with 118k
images from the training set and tested our Quantformer
on the test-dev set [35] including 20k images. Following the
standard COCO evaluation metric [31], we utilize the mean
average precision (mAP) for IoU ∈ [0.5 : 0.05 : 0.95] as the
evaluation metric. We also report average precision with the
IOU threshold 50% and 75% represented as AP50 and AP75

respectively. We followed the experimental settings in [35]
including multi-scale training, learning rate schedule and
soft NMS.

We evaluated Quantformer with the architectures of
DeiT [46] and Swin Transformer [35], where the models
with different sizes were utilized. For object detection, we
adopted the Mask R-CNN framework [22] and Cascade
R-CNN pipeline [2]. The bitwidths for quantized linear
layers could be set to 2, 3, and 4 respectively to achieve
various accuracy-complexity trade-offs. The officially re-
leased weights of full-precision networks for DeiT and Swin
Transformer were adopted as the pre-trained models for
quantized vision transformer learning. We leverage uniform
quantization with learnable upper and lower bounds for
weights and activations. The number of partitions in group-
wise quantization was set to eight in most experiments. We
randomly partitioned the patch features equally in differ-
ent dimensions into eight groups for quantization range
initialization, and the quantization range for each group
was initialized according to the percentile parameter p0
which was set to 0.99. During the differentiable search for
group assignment of patch features in different dimensions,
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Table 3
The accuracy of 2-bit, 3-bit and 4-bit Quantformer, where the number of
partitions in the group-wise quantization is varied. Param. depicts the

number of network parameters and BOPs is the bit-operations.

Bitwidth #Groups. Params. BOPs Top-1 Top-5

2-bit

1 0.39M 22.3G 57.9 82.1
2 0.39M 22.4G 58.9 82.7
4 0.39M 22.7G 60.1 83.4
8 0.39M 23.2G 60.7 84.0
16 0.39M 24.3G 60.8 84.1

3-bit

1 0.53M 27.6G 62.0 84.8
2 0.53M 27.7G 63.7 86.0
4 0.54M 28.0G 64.3 86.4
8 0.54M 28.5G 65.2 87.0
16 0.54M 29.6G 65.3 87.2

4-bit

1 0.69M 34.9G 68.0 88.5
2 0.69M 35.0G 69.2 89.2
4 0.69M 35.3G 69.6 89.5
8 0.69M 35.8G 69.9 89.7
16 0.70M 36.9G 69.9 89.8

we jointly updated the network parameters, quantization
thresholds and importance weight of different quantization
strategies. For the overall objective optimization in differ-
entiable search, the hyperparameter α1 and α2 that control
the importance of the self-attention rank consistency loss
and discrepancy minimization loss were set to 0.6 and 0.05
respectively. In the finetuning stage for discretized models
with the optimal group-wise quantization, we removed the
discrepancy minimization loss in the optimization.

For the parameter optimization in differentiable search
on the ImageNet dataset, the number of the training epochs
is 100 for all architectures. The learning rate started from
2e-5, 5e-5, 8e-5 for quantized transformers in 2, 3, 4 bits
respectively and all ended with 1e-6 via the cosine annealing
decay strategy [46]. The quantized models with the opti-
mal feature element partition in group-wise quantization
were finetuned with 20 epochs via the same learning rate
schedule. For object detection, the backbone was initialized
by the full-precision weight released by [35]. The bitwidth
of the patch embedding layer and the prediction layers in
classification and detection is set to eight, and inference
in other convolutional layers of the detection head applies
low-precision numbers. During the differentiable search
with the COCO dataset, the learning rate was initially set
as 1e-5, 3e-5, 5e-5 for quantized transformers in 2, 3, 4
bits respectively, which was also decayed to 1e-6 with the
cosine annealing decay strategy for the total 20 epochs.
Similarly, the acquired quantized vision transformer with
the optimal group assignment in group-wise quantization
was sequentially trained by 5 epochs with the same learning
rate settings as in differentiable search. The batchsize was
set as 512 and 8 for experiments on ImageNet and COCO
respectively, and the AdamW optimizer [19] was leveraged
to update the network parameters.

4.2 Ablation Study

Since quantization sizably deviates the self-attention in
quantized transformers from that in the full-precision coun-
terparts, we enforce the self-attention in quantized models
to mimic that in full-precision transformers without capacity

Table 4
The performance w.r.t. different initialization strategies for the

quantization range. KLD demonstrates the calibration method that
minimize the KL divergence between the quantized and full-precision

features. Max means that the quantization range is symmetrically set to
the maximum absolute value of the real-valued feature elements in the
group. Percentile stands for the quantization range initialization method

adopted in Quantformer.

Method W/A-bit Top-1 Top-5

KLD
2/2 58.3 82.0
3/3 63.0 85.4
4/4 68.8 89.3

Max
2/2 58.4 82.4
3/3 64.1 86.3
4/4 69.3 89.6

Percentile
2/2 60.7 84.0
3/3 65.2 87.0
4/4 69.9 89.7
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Figure 9. (a) The top-1 classification accuracy with varied hyperparam-
eter α2 in the overall objecive for 4-bit DeiT-T, where different numbers
of partitions for group-wise quantization are leveraged. (b) The evolution
of branch importance weights during the differentiable search.

insufficiency. In order to investigate the effectiveness of the
self-attention rank preservation with capacity-aware distri-
bution, we varied the hyperparameter α1 that controlled
the importance of self-attention rank consistency loss in
the overall objective, and assigned the value of pl in (7)
with different strategies. Meanwhile, we adopted quantiza-
tion strategies with different thresholds and quantization
points for diversely distributed patch features in various
dimensions, which alleviate the rounding and clipping er-
rors caused by the shared quantization strategy. Aiming at
verifying the quantization loss reduction brought by group-
wise quantization, we trained our group-wise quantization
with different numbers of partitions. We also changed the
initialization strategy for the learnable quantization range to
observe the influences. To demonstrate the impact of the gap
between continuous space and discrete group assignment
in the differentiable search, we adjusted the hyperparamter
α2 that balanced the importance of discrepancy minimiza-
tion loss in the overall objective. Finally, we visualized
the branch importance evolution during the differentiable
search. We conducted the ablation study with the DeiT-T
architecture on ImageNet.

4.2.1 Effects of Self-attention Rank Preservation with
Capacity-aware Distribution
Performance w.r.t. the hyperparameter α1 in the overall
objective: The hyperparameter α1 in the overall training
objective controls the importance of the self-attention rank
consistency loss. We varied α1 from 0 to 1 for quantized
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Table 5
The storage cost, computation complexity and the accuracy on ImageNet of different network quantization methods across various vision

transformer architectures and bitwidth settings. Param. depicts the number of network parameters and BOPs is the bit-operations, which evaluate
the storage and computational cost respectively.

Model Method
2-bit 3-bit 4-bit

Param. BOPs Top-1 Top-5 Param. BOPs Top-1 Top-5 Param. BOPs Top-1 Top-5

DeiT-T

Full-precision 5.11M 1.3T 72.2 91.1 5.11M 1.3T 72.2 91.1 5.11M 1.3T 72.2 91.1
PACT 0.39M 22.3G 57.5 81.6 0.53M 27.6G 60.6 83.9 0.69M 34.9G 65.6 87.2
DSQ 0.39M 22.3G 57.7 81.8 0.53M 27.6G 61.0 84.2 0.69M 34.9G 66.3 87.8
LSQ 0.39M 22.3G 58.5 82.5 0.53M 27.6G 64.0 85.2 0.69M 34.9G 67.8 88.6

Quantformer 0.39M 23.2G 60.7 84.0 0.54M 28.5G 65.2 87.0 0.69M 35.8G 69.9 89.7

DeiT-S

Full-precision 22.32M 4.7T 79.9 95.0 22.32M 4.7T 79.9 95.0 22.32M 4.7T 79.9 95.0
PACT 1.55M 53.0G 61.6 84.5 2.22M 73.9G 72.7 91.4 2.89M 103.2G 76.0 93.1
DSQ 1.55M 53.0G 61.6 84.5 2.22M 73.9G 73.0 90.9 2.89M 103.2G 76.0 92.9
LSQ 1.55M 53.0G 61.9 84.9 2.22M 73.9G 74.1 91.9 2.89M 103.2G 76.7 93.3

Quantformer 1.55M 54.8G 65.2 87.1 2.23M 75.7G 75.4 92.8 2.90M 105.0G 78.2 94.2

DeiT-B

Full-precision 86.64M 18.0T 81.8 95.6 86.64M 18.0T 81.8 95.6 86.64M 18.0T 81.8 95.6
PACT 5.71M 139.5G 70.7 90.2 8.38M 223.2G 76.9 93.3 11.04M 340.3G 78.3 93.8
DSQ 5.71M 139.5G 70.9 90.0 8.38M 223.2G 77.0 93.5 11.04M 340.3G 78.4 93.9
LSQ 5.71M 139.5G 71.2 90.5 8.38M 223.2G 77.7 93.6 11.04M 340.3G 78.5 94.0

Quantformer 5.71M 143.2G 73.8 92.0 8.38M 226.9G 78.3 93.9 11.05M 344.0G 79.7 94.3

Swin-T

Full-precision 28.00M 4.6T 81.2 95.5 28.00M 4.6T 81.2 95.5 28.00M 4.6T 81.2 95.5
PACT 2.22M 78.7G 70.6 89.8 3.03M 99.5G 74.8 92.5 3.85M 128.6G 77.0 93.3
DSQ 2.22M 78.7G 70.6 90.2 3.03M 99.5G 76.0 92.9 3.85M 128.6G 77.6 93.5
LSQ 2.22M 78.7G 71.5 90.5 3.03M 99.5G 75.9 92.7 3.85M 128.6G 77.8 93.8

Quantformer 2.23M 81.6G 74.2 92.1 3.04M 102.4G 77.4 93.7 3.85M 131.5G 78.3 94.2

Swin-S

Full-precision 49.68M 8.9T 83.2 96.2 49.68M 8.9T 83.2 96.2 49.68M 8.9T 83.2 96.2
PACT 3.55M 135.2G 73.0 91.0 5.03M 176.8G 76.8 93.0 6.51M 235.1G 78.9 93.7
DSQ 3.55M 135.2G 73.7 92.0 5.03M 176.8G 77.4 93.7 6.51M 235.1G 79.5 94.6
LSQ 3.55M 135.2G 74.9 92.6 5.03M 176.8G 78.0 93.9 6.51M 235.1G 79.9 94.6

Quantformer 3.56M 139.9G 76.7 93.3 5.04M 181.5G 79.2 94.6 6.51M 239.8G 81.0 95.1

transformers in 2, 3, and 4 bits respectively, where the top-1
accuracy is reported in Figure 8(a). Medium α1 achieves the
optimal performance, because large α1 harms the semantic
information learned in the quantized transformers while
the small one fails to enforce the quantized transformers
to focus on important tokens due to the quantization errors.

Performance w.r.t. different value assignment strate-
gies for pl in (7): The lp norm of the self-attention in full-
precision transformers preserves the rank while adjusts the
concentration degree for quantized models with different
capacities. To investigate the influence of the value assign-
ment strategies for pl, we optimized the self-attention rank
consistency loss with fixed pl that was manually assigned
and dynamic pl that was decided based on capacity. For
fixed pl, the value was assigned with 1, 2, 3, 4 and 5 re-
spectively representing various concentration degree in the
self-attention rank preservation for quantized transformers,
where Figure 8(b) demonstrates the top-1 accuracy. The
performance of quantized transformers utilizing different
dynamic strategies for pl is demonstrated in Table 2, where
the relationship between the self-attention entropy of quan-
tized and full-precision models for pl definition is varied.

The dynamic strategy outperforms the fixed one in
all bitwidth settings, which indicates the effectiveness of
the adaptive self-attention distribution based on network
capacity. For fixed strategies, medium pl shows superior
performance compared with others. Small pl enforces the
self-attention in quantized transformers to focus on excess
patches with capacity insufficiency, and large p fails to fully
utilize the capacity of the quantized model with information

loss. For the dynamic strategy, utilizing the division between
the self-attention entropy of quantized and full-precision
transformers as pl achieves the best results. The comparison
with the hinge loss of ranking-aware quantization [37] is
demonstrated in Appendix B.

4.2.2 Effects of Group-wise Quantization
Performance w.r.t. the hyperparameter α2 in the over-
all objective: The hyperparameter α2 in the overall loss
demonstrates the importance of discrepancy minimization
between the continuous search space and the discrete as-
signment for feature element partition. Similar to the abla-
tion study for the hyperparameter of self-attention consis-
tency loss, α2 ranged in [0, 0.1] was evaluated on 4-bit DeiT-
T and different numbers of partitions were also utilized
in the group-wise quantization. Figure 9(a) illustrates the
top-1 accuracy, where medium α2 outperforms other set-
tings. High α2 disables the model to learn the task-relevant
information and low α2 fails to alleviate the significant
discrepancy between the continuous search space and the
discrete group assignment after the differentiable search.

Performance w.r.t. the partition numbers in group-wise
quantization: Discretizing features in different dimensions
with various quantization strategies alleviates quantization
errors while increases the storage and computational com-
plexity. We implemented our Quantformer with different
partition numbers in group-wise quantization to investigate
the influence on accuracy and efficiency. Table 3 illustrates
the results, where the performance enhancement for group-
wise quantization with more than 8 partitions is slight with
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significantly increased complexity overhead. To efficiently
quantize vision transformers with sizable accuracy increase,
we assign the number of partitions with 8 in other experi-
ments.

Performance w.r.t. the initialization strategy for the
learnable quantization range: As empirically proven in
[48] that quantization range initialization contributes signif-
icantly to the final accuracy, we learned the optimal quanti-
zation range initialization with a small calibration set which
consisted of 128 samples from the training images. The
initialized quantization range was decided in the following
three ways: with the goal of minimizing the KL divergence
between the quantized and real-valued tensors [48], sym-
metrically assigned with the maximal absolute value of
real-valued elements, or set to the percentile of the full-
precision feature distribution [29]. The top-1 accuracy of our
Quantformer with different calibration strategies is shown
in Table 4, where assigning the initialized quantization
range with the percentile in feature distribution acquires
the highest accuracy. The outliers in patch features influence
the initialized quantization range obtained via the maximal
real-valued elements or that acquired by minimizing the KL
divergence between the quantized and real-valued features,
while initializing the quantization range with the percentile
in feature distribution is robust to outliers which contribute
significantly to quantization errors.

Visualization of branch importance in differentiable
search: Figure 9(b) depicts the evolution of branch impor-
tance weights during the differentiable search for group
assignment. At the early stage of the differentiable search,
the difference among the branch importance weights is
not obvious because the task risk dominates instead of
the discrepancy minimization loss. Meanwhile, the network
weights are not well-trained and the contribution of var-
ious quantization strategies is similar, so that the update
of the branch importance weights is not significant. When
the network gradually converges, the task loss only makes
slight contribution in the gradient descent. The principal im-
pacts on the performance are resulted from the quantization
functions with different rounding and clipping errors. The
discrepancy minimization loss dominates and the branch
importance weights are updated significantly. Therefore, the
difference among branch importance weights increases with
alleviated discretization discrepancy.

4.3 Comparison with the State-of-the-art Network
Quantization Methods

In this section, we compare our Quantformer with the state-
of-the-art network quantization methods including PACT
[9], DSQ [18] and LSQ [16] on ImageNet for image classifi-
cation and on COCO for object detection. The architectures
of DeiT-T/S/B [46] and Swin-T/S [35] were employed for
the evaluation on image classification, and we leveraged
Swin-T/S [35] as the backbone for the comparison on object
detection. We also provide the performance of full-precision
vision transformers for reference. The accuracy of state-of-
the-art methods were obtained by re-running the officially
released code or re-implementing the approaches to quan-
tize the vision transformers.

Table 6
Comparison of storage cost, computational complexity, top-1 and top-5

classification accuracies on ImageNet with state-of-the-art
mixed-precision quantization in DeiT-T/S/B. HAQ+Quant. and

EdMIPS+Quant. respectively represent the combination of HAQ and
Quantformer and the integration of EdMIPS and Quantformer .

Methods Params. BOPs Top-1 Top-5

DeiT-T
Baseline 5.11M 1.3T 72.2 91.1

HAQ 0.50M 20.9G 62.6 85.3
HAQ+Quant. 0.50M 21.8G 65.3 86.4

EdMIPS 0.45M 23.3G 62.1 85.0
EdMIPS+Quant. 0.45M 24.2G 64.9 86.2

HAQ 0.63M 31.7G 67.5 87.8
HAQ+Quant. 0.63M 32.6G 69.6 89.9

EdMIPS 0.62M 32.3G 67.7 88.0
EdMIPS+Quant. 0.62M 33.2G 69.4 89.8

DeiT-S
Baseline 22.10M 4.7T 79.9 95.0

HAQ 2.07M 58.6G 72.5 91.1
HAQ+Quant. 2.07M 60.4G 75.1 92.6

EdMIPS 1.86M 64.7G 72.7 91.0
EdMIPS+Quant. 1.86M 66.5G 75.0 92.4

HAQ 2.69M 93.2G 75.8 93.0
HAQ+Quant. 2.69M 95.0G 76.9 93.3

EdMIPS 2.64M 93.3G 75.7 92.9
EdMIPS+Quant. 2.64M 95.1G 77.0 93.6

DeiT-B
Baseline 87.80M 15.8T 83.5 96.5

HAQ 7.82M 184.4G 77.6 93.1
HAQ+Quant. 7.82M 188.1G 78.6 94.2

EdMIPS 7.01M 201.9G 77.4 93.3
EdMIPS+Quant. 7.01M 205.6G 78.2 93.9

HAQ 10.26M 305.4G 78.3 93.9
HAQ+Quant. 10.27M 309.1G 79.2 94.3

EdMIPS 10.08M 301.4G 78.4 94.0
EdMIPS+Quant. 10.08M 305.1G 79.7 94.5

4.3.1 Evaluation on image classification
Results on ImageNet: Table 5 shows the comparison of
storage cost, computational complexity, top-1 and top-5
accuracies on ImageNet across different vision transformer
architectures and network quantization methods, where the
bitwidths of weights and activations for the fully-connected
layers were set as 2, 3, and 4 respectively. Our Quantformer
significantly accelerates the computation and save the stor-
age cost by 7.84× (86.64M vs. 11.05M) and 52.33× (18.0T
vs. 344.0G) for DeiT-B and 7.63× (49.68M vs. 6.51M) and
37.11× (8.9T vs. 239.8G) for Swin-S in 4-bit settings. The effi-
ciency enhancement is less notable for Swin Transformer be-
cause of the high-precision downsampling layers for patch
concatenation without significant performance degradation.

PACT enables the quantization thresholds to be learn-
able, and DSQ utilizes the differentiable soft quantization
function in the forward and backward passes during train-
ing to reduce the optimization difficulty. LSQ accurately
approximates the gradient to the quantizer step size for
more fine-grained optimization and scales the step size
to improve convergence. However, they all face the chal-
lenges of deviated self-attention rank and significant dis-
cretization errors in quantized vision transformers. On the
contrary, our Quantformer employs capacity-aware self-
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Table 7
The storage and computation complexity, mean average precision for IOU from 0.5 to 0.95 (mAP) and average precision with the IOU threshold

50% (AP50) and 75% (AP75) of different network quantization methods across various vision transformer architectures and detection frameworks,
where the bitwidth was set to 2, 3, 4 respectively. Param. depicts the number of network parameters and BOPs is the bit-operations, which

evaluate the storage and computational cost respectively.

Backbone BitWidth Method
Mask R-CNN Cascade R-CNN

Param. BOPs mAP AP50 AP75 Param. BOPs mAP AP50 AP75

Swin-T

32bit – 48.00M 273.41T 46.0 68.1 50.3 86.00M 762.88T 50.4 69.2 54.7

2bit

PACT 6.64M 2.28T 38.5 60.4 42.5 16.07M 4.19T 42.0 60.7 45.9
DSQ 6.64M 2.28T 39.5 61.6 43.5 16.07M 4.19T 43.2 61.3 47.0
LSQ 6.64M 2.28T 40.0 62.2 44.3 16.07M 4.19T 43.3 63.6 47.3

Quantformer 6.64M 2.34T 41.8 63.4 44.9 16.07M 4.25T 44.2 63.9 48.8

3bit

PACT 7.54M 3.49T 40.8 62.9 45.4 16.97M 7.79T 46.0 64.4 50.2
DSQ 7.54M 3.49T 41.2 63.2 45.1 16.97M 7.79T 46.3 64.8 50.2
LSQ 7.54M 3.49T 41.7 64.0 45.6 16.97M 7.79T 46.2 64.7 50.1

Quantformer 7.54M 3.55T 42.8 64.4 47.0 16.97M 7.85T 47.1 65.2 51.6

4bit

PACT 8.45M 5.17T 42.7 64.9 47.1 17.88M 12.82T 46.8 65.3 50.9
DSQ 8.45M 5.17T 43.4 65.8 47.8 17.88M 12.82T 47.7 66.3 51.7
LSQ 8.45M 5.17T 43.7 65.8 48.1 17.88M 12.82T 48.2 66.7 52.2

Quantformer 8.46M 5.23T 44.9 66.9 49.4 17.89M 12.88T 49.1 67.2 53.3

Swin-S

32bit – 69.00M 367.62T 48.5 70.2 53.5 107.00M 858.11T 51.9 70.7 56.3

2bit

PACT 7.96M 3.48T 40.4 62.0 44.8 17.39M 5.39T 42.8 61.4 46.8
DSQ 7.96M 3.48T 41.2 62.9 45.2 17.39M 5.39T 43.8 62.1 47.7
LSQ 7.96M 3.48T 41.9 63.4 46.5 17.39M 5.39T 43.3 61.9 47.7

Quantformer 7.96M 3.58T 43.8 65.5 47.5 17.39M 5.49T 44.7 63.4 48.9

3bit

PACT 9.54M 5.13T 43.4 65.3 47.8 18.97M 9.43T 45.0 63.7 49.4
DSQ 9.54M 5.13T 44.2 66.0 48.9 18.97M 9.43T 45.8 64.5 50.1
LSQ 9.54M 5.13T 44.3 65.8 48.7 18.97M 9.43T 45.3 64.2 49.6

Quantformer 9.55M 5.23T 45.5 66.7 49.3 18.98M 9.53T 46.8 65.2 51.2

4bit

PACT 11.11M 7.43T 44.8 66.4 49.6 20.54M 15.08T 49.8 68.4 54.1
DSQ 11.11M 7.43T 45.2 67.1 49.7 20.54M 15.08T 50.9 69.3 55.3
LSQ 11.11M 7.43T 45.1 66.9 49.6 20.54M 15.08T 50.8 69.4 55.2

Quantformer 11.12M 7.53T 47.2 69.0 52.0 20.55M 15.18T 51.5 70.1 56.1

attention imitation to preserve the self-attention rank con-
sistency between quantized and full-precision transformers,
and leverages group-wise quantization with various thresh-
olds and rounding points for patch features across differ-
ent dimensions. Therefore, our Quantformer improves the
top-1 accuracy by a sizable margin in vision transformers
with different bitwidths and various architectures compared
with the state-of-the-art baseline methods. Comparison with
more baseline methods are illustrated in Appendix D.

The presented techniques including self-attention rank
preservation and group-wise quantization can be integrated
with mixed-precision quantization methods for further per-
formance boosting under the given storage and computa-
tional cost constraint. Mixed precision quantization assigns
optimal bitwidths to different layers according to their
informativeness to enhance the accuracy-complexity trade-
off. As the vision transformer with mixed-precision quan-
tization also suffers from deviated self-attention rank and
significant quantization errors, we employed our Quant-
former as an plug-and-play module for DeiT architectures
where the layer-wise bitwidth assignment was decided by
HAQ [48] and EdMIPS [3]. The implementation details are
demonstrated in Appendix A. In order to show the per-
formance with different accuracy-complexity trade-offs, we
applied two BOPs constraints for each architecture. Table 6
illustrates the results, where the integration of Quantformer
can strengthen the performance of vanilla mixed-precision
quantization methods across different complexity budgets.

4.3.2 Evaluation on Object Detection
Results on COCO: Despite of demonstrating the number
of parameters, BOPs, mean average precision (mAP), we
also report the average precision at different IOU thresh-
olds with different bitwidth settings in object detection.
Meanwhile, we leveraged both the Mask R-CNN [22] and
Cascade R-CNN [2] to evaluate the generalization ability
across different detection frameworks for our Quantformer.
Table 7 shows the storage cost, computational complexity
and the accuracy, where our Quantformer outperforms the
baseline methods across various architectures and detection
frameworks. With similar parameter numbers and BOPs
to the state-of-the-art methods LSQ, the presented Quant-
former improves the mAP of 4-bit Swin-T by 1.2% (44.9%
vs. 43.7%) and 0.9% (49.1% vs. 48.2%) with Mask R-CNN
and Cascade R-CNN, and 2.1% (47.2% vs. 45.1%) and 0.7%
(51.5% vs. 50.8%) of 4-bit Swin-S with the above detection
frameworks. Meanwhile, the performance enhancement in
the Mask R-CNN detection framework is more obvious than
Cascade R-CNN, as the hierarchical structures in Cascade
R-CNN help alleviate information loss in quantized vision
transformers. Therefore, the self-attention rank preservation
and the group-wise quantization strengthen information
retention more significantly for the Mask R-CNN.

5 CONCLUSION

In this paper, we have proposed extremely low-precision vi-
sion transformers called Quantformer for efficient inference.
The presented Quantformer preserves the self-attention
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rank consistency between quantized transformers and full-
precision counterparts with capacity-ware distribution, so
that the long-range dependencies are correctly mined with-
out capacity inefficiency. We partition features in different
dimensions for group-wise quantization to minimize the
discretization errors with negligible complexity overhead.
Extensive experiments on image classification and object de-
tection have demonstrated the superiority of Quantformer.
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