
(a) (b) (c)

Figure 5: (a) The correlation between discretization error difference (DED) and the quantization
errors in 15th layer. (b) The correlation between DED and the entropy in 5th layer and (c) in 25th
layer.

Model Dependency Proxy
W6A6 W4A4

Accuracy Search Cost Accuracy Search Cost

LLaVA-7B
Quantization Errors 88.59 43.7 77.97 41.2

Entropy 88.95 26.9 78.66 25.9

LLaVA-13B
Quantization Errors 88.96 58.6 78.82 54.2

Entropy 89.04 33.1 79.89 31.8

Table 5: Comparisons with different proxy for mining cross-layer dependency for LLaVA-v1.3
models in ScienceQA dataset across bitwidth setting.

A Why leveraging entropy as proxy:

The benefit and motivation for using entropy rather than quantization errors as a proxy for block-wise
searches lie in several key considerations. We analyze that larger entropy indicates more homogeneous
data distribution, which is a well-established principle in information theory. Consequently, DED
and activation entropy are strongly correlated with an value of 0.97. However, greater quantization
error does not necessarily imply more homogeneous data distribution and does not show a positive
correlation with DED, having an value of 0.81, which is empirically verified in the figure 5.

Meanwhile, the search cost of quantization errors doubles compared with entropy as a proxy, as the
calculation of quantization errors requires multiple forward passes for both the FP model and the
quantized model. The weak correlation and the unbearable search cost render quantization error
unsuitable as a metric for measuring cross-layer dependency.

Furthermore, we conducted experiments comparing the proxy effectiveness of quantization error and
entropy across different models under various bitwidths in Table 5. Entropy outperformed quantization
errors by a significant margin (78.66 vs. 77.97), showing a strong cross-layer dependency within each
block. This allowed us to achieve optimal block partitioning by mining the cross-layer dependency.

B Performance on more baseline methods

We have extended our experiments to an additional baseline method ZeroQuant-V2[47] and compared
it against our proposed methods in Table 6. ZeroQuant-V2 leverages per-token quantization with
different rounding functions to minimizing activation discretization errors. However, ignoring
cross-layer dependency of discretization errors fails to acquire the optimal rounding strategy with
severe outliers under low bitwidth and degrades the performance significantly. On the contrary,
our Q-VLM mines the cross-layer dependency of output distribution across layers, minimizing the
block-wise discretization errors to avoid suboptimal quantization. We further optimize the visual
encoder to disentangle the cross-layer dependency for fine-grained search space decomposition. As a

14



Model Quantization Method
W8A8 W4A4

Accuracy Inference Time Accuracy Inference Time

LLaVA-7B
ZeroQuant-V2 89.04 10.7h 78.08 7.3h

Q-VLM 89.58 8.3h 79.79 6.1h

LLaVA-13B
ZeroQuant-V2 89.13 12.6h 78.81 9.7h

Q-VLM 89.81 11.2h 80.78 8.9h

Table 6: Comparisons with different quantization methods for 7B and 13B models across W6A6 and
W4A4 bitwidth settings.

Dataset Shots FP
8bit 4bit

Q-LoRA Q-VLM Q-LoRA Q-VLM

Vizwiz

0 23.79 21.24 21.47 17.62 18.69

4 27.05 25.83 26.59 24.17 24.55

32 39.76 36.38 37.60 31.64 35.52

Hateful Memes

0 50.23 47.75 49.12 43.86 44.22

4 50.10 48.62 49.55 45.12 45.26

32 50.27 50.02 51.05 45.76 47.84

Table 7: Performance comparison on Vizwiz and Hateful Memes datasets across FP, 8bit, and 4bit
quantization methods with different shot settings.

result, our method outperforms ZeroQuant-V2 by 1.71 (79.79 vs. 78.08) in answering accuracy on
ScienceQA dataset under 4-bit in LLaVA-7B model. Additionally, our method enhances inference
speed, exceeding ZeroQuant-V2 by 1.2h (6.1h vs. 7.3h) due to utilizing stored rounding parameters
instead of dynamic per-token quantization. The additional baseline provides a more comprehensive
evaluation framework to highlight the strengths of our approach.

C Performance on other multi-modal architectures

We also explored the multi-modal architecture OpenFlamingo[3] to ensure the robustness and
generalizability of our methods 7. We deploy our method on OpenFlamingo 3B model using
Vizwiz and Hateful Memes[22] datasets, selecting bitwidths of 4 and 8 for quantized layers. Q-
VLM designed in LLaVA-like architectures can be effectively adapted to cross-attention based
VLMs due to the consistent core mechanism of cross-attention and the robust multimodal alignment
capabilities pre-trained on large-scale vision-language pairs. Since OpenFlamingo is a cross-attention
based VLM, exploiting cross-layer dependency is particularly suitable. Our method outperforms
Q-LoRA by 1.22 (37.60 vs. 36.38) under 8-bit in OpenFlamingo-3B model. The advantage of our
method becomes more obvious for 4-bit 3B LVLMs because quantization errors and cross-layer
dependency play a more significant role in networks with low capacity. These results underscore
the robustness and generalizability of our approach across different tasks, model architectures and
datasets, demonstrating its effectiveness in diverse scenarios.
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