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Planning Irregular Object Packing via Hierarchical
Reinforcement Learning
Sichao Huang, Ziwei Wang, Jie Zhou, and Jiwen Lu

Abstract—Object packing by autonomous robots is an im-
portant challenge in warehouses and logistics industry. Most
conventional data-driven packing planning approaches focus on
regular cuboid packing, which are usually heuristic and limit
the practical use in realistic applications with everyday objects.
In this paper, we propose a deep hierarchical reinforcement
learning approach to simultaneously plan packing sequence and
placement for irregular object packing. Specifically, the top
manager network infers packing sequence from six principal
view heightmaps of all objects, and then the bottom worker
network receives heightmaps of the next object to predict the
placement position and orientation. The two networks are trained
hierarchically in a self-supervised Q-Learning framework, where
the rewards are provided by the packing results based on the top
height , object volume and placement stability in the box. The
framework repeats sequence and placement planning iteratively
until all objects have been packed into the box or no space
is remained for unpacked items. We compare our approach
with existing robotic packing methods for irregular objects in a
physics simulator. Experiments show that our approach can pack
more objects with less time cost than the state-of-the-art packing
methods of irregular objects. We also implement our packing
plan with a robotic manipulator to show the generalization ability
in the real world.

Index Terms—Manipulation planning, reinforcement learning,
robotic packing.

I. INTRODUCTION
Due to the rapid development of the E-commerce and labor

shortages, robotic packing has attracted more and more interest
in warehouse automation in recent years [1], [2]. Compared
to conventional methods, automatically packing with robotic
arms brings significant benefits including higher efficiency,
increased space utilization and lower accident rates. An au-
tomatic packing system consists of environment perception,
packing planning and robotic manipulation modules. Among
these above modules, packing planning module generates
the optimal packing sequence and placement for the arm
manipulator according to the object information received from
environment sensors. Hence, fully utilizing the packing space
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Fig. 1: An example of packing planning for irregular objects.
Objects should be packed into the empty box with optimal
sequence and placement.

with the optimal packing plan is desirable for effective robotic
packing systems.

Packing planning is an NP-hard combinatorial optimization
problem with high complexity. In order to efficiently generate
the optimal sequence and placement of objects, heuristic
methods [1], [3], [4] with the greedy objective minimize the
object stack heights in the packing boxes. Since the greedy
search results in sub-optimal solution and high computational
cost for object arrangement, data-driven methods [2], [5], [6]
employ the reinforcement learning framework for bin packing.
However, the objects for packing in realistic applications are
usually irregular. Conventional learning based methods for
cuboid packing fail to perceive fine-grained information from
the high-resolution visual clues of irregular objects, and their
practicality to pack objects with various shapes and appearance
is still limited.

In this paper, we propose a deep hierarchical reinforcement
learning method to simultaneously plan sequence and place-
ment for irregular object packing. With 3D object models,
our method extracts fine-grained information from the high
resolution visual clues to enhance the practicality for irregular
object packing, and effectively search for the optimal solution
for object arrangement in a data-driven manner. More specif-
ically, the high-level manager in hierarchical reinforcement
learning chooses the next object from all remaining instances
according to the heightmaps of six principal views (front,
rear, left side, right side, top and bottom) via convolutional
networks. The low-level worker yields score prediction for
different placement locations and orientations of the selected
object, and picks the placement with highest score based on
the heightmaps of the selected object and the packing box.
The packing box is initialized to be empty for irregular object
packing, and object instances are packed into the box through
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iterative sequence and placement planning. The packing pro-
cess stops until all objects are contained in the box or no space
is remained for unpacked objects. With the hierarchical archi-
tectures, the extremely large search space of object sequence
and placement for packing arrangement is efficiently explored
with optimal solution generation. The manager and worker
networks are jointly trained in a self-supervised Q-Learning
framework, where the rewards are acquired from box space
utilization and the placement stability. Fig. 1 demonstrates an
example of packing planning for irregular objects. We evaluate
our method in the simulated environment by packing random
item sets from real-world object scanning. Experiments show
that our method outperforms the state-of-the-art packing plan-
ning methods with respect to the number of packed objects in
given container and the latency for plan generation. Moreover,
the increase in effectiveness and efficiency for irregular object
packing is more significant for objects with smaller size and
thickness. We also deploy our packing planning method in a
robotic manipulator to show the generalization ability in the
real world.

II. RELATED WORK

In this section, we briefly review two related topics: 1)
Packing planning and 2) hierarchical reinforcement learning.

A. Packing Planning

Packing planning is a classic NP-hard combinatorial op-
timization problem [7]. Most research on packing planning
focuses on packing 2D or 3D rectangle objects, and existing
methods can be divided into two categories: heuristic [8]–
[10] and data-driven approaches [11]–[13]. Heuristic methods
generate the sequence and placement of objects by greedy
objective regarding height, surface area and volume. Jangiti et
al. [14] proposed a deterministic heuristic based on angle-
occupying placement with maximum fit degree. El et al.
[15] modified squirrel search algorithm for improved best fit
heuristic to solve large-scale instances within a reasonable
time. To address the problem of sub-optimal solution and high
computational cost in heuristic methods, data-driven methods
[11] explored the large search space by efficiently interacting
with the environment. Zhang et al. [12] encoded the input
with self-attention and decoded the sequence and placement
with reinforcement learning for bin packing problem. Hu et
al. [5] generated the optimal bin packing sequence via deep
reinforcement learning, and Tanaka et al. [2] simultaneously
planned picking and placing for efficient transportation of
cuboids. Nevertheless, irregular objects instead of cuboids are
usually packed in realistic applications, and yielding optimal
object sequence and placement for irregular objects accord-
ing to the visual appearance has aroused extensive interest.
Meta-heuristic methods including Tabu Search (TS) [16] and
Guided local search (GLS) [17] begin with randomly placed
objects and iteratively minimize the objective function by
moving objects with collision prevention [4]. Constructive
positioning heuristic methods containing Empty Maximal
Space (EMS) [18], Maximum Contact Area (MCA) [19] and
Heightmap Minimization (HM) [1] pack objects into empty

container in the order determined by heuristic rules. Goyal
et al. [20] proposed PackIt for irregular object packing that
decides sequence with deep networks and selects position
and orientation with heuristics. However, the greedy search
for irregular object packing results in sub-optimal solution
and high computational cost in object arrangement, which
significantly limits the practicality in realistic applications.

B. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning aims to effectively ex-
plore the large search space by decomposing the complex
selections into various hierarchies, because the space shrinks
significantly for search efficiency enhancement [21]–[23].
Early attempts [24] presented the option framework where
the agent in the top level assigned the goal for the search
process and the agent in the bottom level achieved the goal by
selecting the optimal action primitives. Recently, hierarchical
reinforcement learning has been extended to a wide variety of
tasks including machine learning [25]–[27], computer vision
[28], [29] and robotic manipulation [30]–[32]. For the first
regard, Wang et al. [27] employed the top-level agent to
partition channels of binary networks and utilized the bottom-
level agent to discover the optimal fine-grained channel-wise
interaction in each partition, so that the network capacity is
strengthened with reduced the quantization errors. Wan et al.
[33] proposed a hierarchical reinforcement learning framework
for encoding historical information and learning structured
action space to learn chains of reasoning from a knowledge
graph. In computer vision, Wang et al. [28] modeled video
caption generation as a two-level search problem, where the
manager selected the context for each segment and the worker
yielded the caption for each segment under the guidance of the
context. Xie et al. [34] proposed integrated recommendation
on pictures and videos with the high-level agent as an item
recommender and the low-level agent as a channel selector.
For robotic manipulation, Yang et al. [31] trained the symbolic
planing and kinematic control policies with hierarchical agents
to enable the model to learn varied outcomes of the multi-step
tasks. Gieselmann et al. [35] designed a planning algorithm
for robots by dividing the original Markov Decision Process
(MDP) into a hierarchy of shorter horizon MDPs, and solved
them with sub-goals at the bottom level of the hierarchy. In this
paper, we generalize the hierarchical reinforcement learning
framework for irregular object packing in order to effectively
search the optimal sequence and placement in the large space.

III. APPROACH

In this section, we first briefly introduce the problem of
packing planning for irregular objects and the overall pipeline.
Then we present the detail of the hierarchical reinforcement
learning framework, where the high-level manager predicts
the packing sequence and the low-level worker yields the
placement including location and orientation for the selected
objects. Finally, we formulate the reward function to train the
agent in hierarchical reinforcement learning.
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Fig. 2: The overall pipeline of the proposed method which consists of the sequence planning module and the placement
planning module. The sequence planning module predicts the next object to pack based on the six principal view heightmaps
of all unpacked objects and the box heightmap, and the placement planning module generates the optimal placement position
and orientation for the selected object by its top-view and bottom-view heightmap and the current object arrangement in the
packing box.

A. Problem Statement and Overall Pipeline

The objective of packing planning for irregular objects is to
predict the packing sequence and placement for each object ac-
cording to the object shape, which provides the optimal object
arrangement for robot manipulator to accomplish automatic
packing. The main challenges for the problem are two-fold.
First, high-resolution visual clues of irregular objects make
significant contribution to generate optimal packing plans, and
the visual perception module is required to represent the fine-
grained visual information for arrangement prediction. Second,
the packing sequence and placement are tightly coherent, and
efficient search algorithms are necessary for simultaneously
searching the optimal solution in the large composed space.
To address these, we extract the informative visual feature
maps from heightmaps of objects and boxes in different views,
and search the sequence and placement for packing with the
hierarchical reinforcement learning framework.

Fig. 2 demonstrates the overall pipeline of our framework.
The six principal view heightmaps for each object from 3D
models and the packing box in the top-down view are lever-
aged to represent the visual information. The manager network
selects the next object for packing according to the heightmaps
of unpacked objects and the box heightmap. The heightmap
of the selected object and the box heightmap are leveraged to
yield the optimal position and orientation for object placement.
The object selection and placement generation are iteratively
implemented until all objects have been packed into the box
or no space for unpacked items remains.

B. Sequence Planning

The sequence planning module predicts the next object to
pack according to the information of the packed objects in the
box and all unpacked objects, since the arrangement of packed
objects have significant influence on the choice of subsequent
objects.

State: The state space represents all unpacked objects and
the current object arrangement in the box. The agent requires

sufficient information from multiple viewpoints to demonstrate
the visual clues of unpacked objects. We employ six principal
view heightmaps of unpacked objects to illustrate the shape
information for the manager agent. All six principal view
heightmaps for unpacked objects are taken in the pose where
objects are stable in the plane, since the six principal view
orientations of stable poses exist in the object placement
with higher possibility. Zero-planes of the heightmap in each
viewpoint is the opposite plane of the object bounding box.
Object arrangement in the packing box is depicted by the top-
view heightmap.

Action: The manager agent predicts the optimal object to be
packed in the next placement based on the six principal view
heightmaps of all unpacked objects and box heightmap. By
concatenating the six principal view heighmaps of different
unpacked objects with the box heightmap respectively, we
acquire the high-resolution feature maps for placement of
various unpacked objects via convolutional neural networks
inspired by [36]. The feature maps of all objects are concate-
nated to predict the score of being selected for placement,
where the feature maps of packed objects are set to all-zero
matrix to keep the dimension consistency for convolutional
neural networks in score prediction. The unpacked object
with the highest score is chosen to be packed into the box.
After the placement is completed by the worker agent, the
heightmap of the packing box is updated and the feature
map for score prediction of the selected object is assigned
with all-zero matrix. When the number of unpacked objects
is extremely large, the manager agent select the object for
packing from K unpacked instances with the top-K bounding
box volume for efficient search, since packing larger objects
with higher priority results in better space utilization and
placement stability.

C. Placement Planning

The placement planning module predicts the placement
position and orientation for the object selected by the sequence
planning module. For each chosen object to be packed, the
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agent takes the action to place the instance into the box
at predicted position (X,Y ) and orientation (ϕ, θ, ψ), while
(X,Y ) represent the horizontal position in x and y axis and
(ϕ, θ, ψ) are the Euler angles indicating roll, pitch and yaw.
The vertical position Z is determined by the lowest position
of object placement due to the gravity, where the selected
instance does not collide with the packed objects in the box.

State: The state space represents the selected object to
pack and the current object arrangement in the box. Similar to
the sequence planning, the object arrangement in the packing
box is demonstrated by the top-view heightmap. Since only
top-down packing trajectories are allowed in the packing box
for safety and stability, the selected object is prohibited to
shift horizontally inside the box. Therefore, the top-view and
height-view heightmaps of selected objects provide sufficient
visual information for the chosen instance.

Action: Inspired by [37], we first scan the selected object to
acquire the top-view and bottom-view heightmaps in different
roll and pitch, where the roll and pitch are discretized as
Orp = {(ϕ1, θ1) . . . (ϕn, θn)} in grids. We then rotate the
above heightmaps to obtain the heightmaps in different yaw,
where the yaw is quantized into Oy = {0, ψ1, . . . , ψm}
with the equal interval. The roll, pitch and yaw all range
from 0 to 2π. Since the complexity of object scanning for
heightmap acquisition is significantly reduced by heightmap
rotation, the efficiency of placement planning is significantly
enhanced during inference. We denote the top-view and
bottom-view heightmaps of the selected object in the Euler
angle (ϕi, θi, ψj) as Hij

t and Hij
b respectively, which are

concatenated to the box heightmap with crop and alignment
to generate the optimal horizontal position for placement
given the orientation. The placement score matrix W ij for
the selected object in the Euler angle (ϕi, θi, ψj) is yielded
via convolutional neural networks, and the size of W ij keeps
the same as the box heightmap. The element in the xth row
and yth column of W ij is represented by W ij [x, y], which
demonstrates the score that the horizontal object center should
be placed in the position (x, y) of the box with the orientation
(ϕi, θi, ψj). The elements of the score matrix are set to zero
if the corresponding placement is illegal, which include the
marginal area with collision to the box and the position that
the object exceeds box height after placement. The agent
selects the orientation and horizontal position candidates with
the highest score for placement, and calculate the vertical
position z for placement based on bottom-view heightmaps
of the selected object and box heightmap [1]:

z =
⌈w/2⌉−1
max

s=−⌊w/2⌋

⌈h/2⌉−1
max

t=−⌊h/2⌋
(Hc[x+ s, y + t]−Hij

b [s, t]) (1)

where Hc[x, y] and Hij
b [x, y] mean the element in the ith row

and jth column of Hc and Hij
b respectively, and w and l

are the width and length of the heightmaps. By placing the
selected object with the position and orientation predicted by
the placement planning module, the box space is effectively
utilized for irregular object packing,

Fig. 3: The objective function of compactness and pyramidal-
ity. (a) Compactness is the ratio between the total volume of
packed objects and the minimum box size needed (red dashed
line). (b) Pyramidality is the ratio between the total volume
of packed objects and the region acquired by projecting all
objects to the bottom of the box (green dashed line).

(a) (b) (c)

Fig. 4: (a) Part of select objects model fom YCB and OCRTOC
datasets in our expriments. (b) and (c) show examples of object
combinations in easy and hard experimental settings.

D. Reward Function and Network Training

In order to effectively explore the search space, we utilize
Q-Learning for the hierarchical reinforcement learning frame-
work. Given state st at the tth step for both the sequence and
placement planning modules, the agents aim to take optimal
action at to iteratively maximize the expected reward function
over the whole process. In robotic packing planning, our goal
is to pack as many objects as possible into a packing box with
fixed size. To achieve this goal, we calculate the compactness
C, the pyramidality P [38] and the stability S for the objective
function, which is formulated in the following for the state st:

max J(st) = αC + βP + γS (2)

= α

∑t
i=1 Vi

LWht
+ β

∑t
i=1 Vi
V t
p

+ γS (3)

where Vi means the volume of the ith packed objects in the
box, and L and W are the length and width of the box
respectively. ht represents the maximum height of packed
objects in the box after putting the tth object into the con-
tainer, which can be depicted by the largest value in the box
heightmap. The volume for the projection of the t packed
objects to the bottom is represented by V t

p , and can be obtained
via the summation over the box heightmap. α, β and γ are
hyperparameters to balance the importance of compactness,
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pyramidality and stability in the objective function. We detail
the physical meanings of the compactness, pyramidality and
stability in the objective function as follows:

(1) The compactness C is the ratio of occupied volume to
minimum box volume that is capable of containing all the
objects, as shown in Fig. 3(a). To pack more instances
given the height constraint, the cuboid space with the
height of packed objects and with the base area of the
box should be minimized to fully leverage the space in
the box. Therefore, we encourage the agent to maximize
the compactness to improve space utilization.

(2) The pyramidality P is the ratio of occupied volume to
the projected volume of packed objects to the bottom, as
shown in Fig. 3(b). Object arrangement in the box should
leave more continuous space to be available for subsequent
packing in order to enhance the space utilization. We
encourage the agent to maximize the pyramidality to avoid
continuous space being blocked by objects.

(3) The stability factor S is decided by comparing the planned
placement with actual placement results in the simulated
environment. We assign S = 1 for stable placements and
S = 0 for unstable placements. The stable placement
means the scenario that the position and orientation dif-
ference between the planned and the actual one in the
simulated environment is smaller than a threshold.

We define the reward function for round t based on the
objective function as following:

r(st, at) = J(st+1)− J(st) (4)

where r(st, at) represents the reward for the action at in the
state st, and the agent is encouraged to increase the objective
function with the selected actions. To train the hierarchical
framework efficiently, we employ a two-stage training method
for faster convergence. First, we only train the placement
planning module with heuristic packing sequence sorted by
the bounding box volume. After obtaining a pre-trained agent
for placement generation, we replace the heuristic method of
sequence planing by the agent to jointly optimize the man-
ager and the worker neural networks. During the parameter
optimization, we update the policy at different time-scales for
better cooperation between the high-level and low-level agents.

IV. EXPERIMENTS

In this section, we conduct extensive experiments in phys-
ical simulated environment (PyBullet). We first present the
implementation details, including the workspace settings in the
simulator, the model configuration and the dataset collection,
and then introduce the evaluation metrics for robotic packing
planning. After that, we make a discussion for important
hyperparameters in our methods, and compare our approach
with state-of-the-art packing planning techniques to show the
superiority of our framework brought by the sequence and
placement planning module. Finally, we deploy our packing
planning method on a robot manipulator to verify the gener-
alization ability in the real world.

(a) (b) (c)

Fig. 5: The visualization of packing plans obtained via (a) the
B-Box Sequence + HM Heuristic, (b) the B-Box Sequence +
Placement Planning and (c) the Sequence Planning + Place-
ment Planning methods (ours), where our method learns to
stack bowls on plates to improve space utilization and puts
the screwdriver and the fork finally to improve stability.

A. Implementation Details

In the simulated environment, we choose the packing box of
size 40cm×40cm×30cm as the constrained space for robotic
packing. The spatial resolution of the RGB-D camera scanning
the box heightmap is 200×200, which means each pixel in the
heightmap represents a 2mm×2mm area in the base surface
of the box. Heightmaps of objects are also scanned with the
same resolution. For HM heuristic, we downsampled the box
heightmap to 50× 50.

We leverage ResNet18 [39] as the backbone for visual
feature extraction in the sequence planning module, which
predicts the next object to pack via a three-layer fully-
connected networks. In our experiments, we set K = 20 as
the maximum number of objects for policy generation of the
sequence planning module. In the placement planning module,
the search intervals for roll, pitch and yaw are all set as
π/2 in default. We employ a U-Net [40] architecture network
with 14 layers to generate the score matrix with the same
size of box heightmap for optimal orientation and location
selection of placement. We utilize the Adam optimizer with
the batchsize of 128. The learning rate is 1e-3 in the first stage
and 1e-4 in the second stage. For hierarchical reinforcement
learning, we update the placement planning agent for each
epoch and the sequence planning agent per 4 epochs during
the joint training stage. The hyperparameter α, β and γ
in the objective function are assigned with 0.75, 0.25, and
0.25 respectively. The stability measurement thresholds for
difference of positions and orientations are set to 2cm and
π/6.

All object for packing in our experiments come from the
YCB dataset [41] and OCRTOC dataset [42]. We select 121
types of objects to construct our training and test dataset,
as representative objects are shown in Fig. 4a. To evaluate
the performance of our approach and the baseline methods
in packing objects with different shapes, we discuss the
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TABLE I: The performances of our method with different
maximum number of objects K for policy generation of
sequence planning module in easy settings. #Obj. means the
number of packed objects and Lat. represents the latency for
each object.

K C P S # Obj. Lat.(s)
0 0.451 0.758 0.827 40.07 0.62

10 0.454 0.763 0.834 40.25 0.80
20 0.456 0.766 0.836 40.38 0.97
30 0.457 0.766 0.837 40.41 1.16

performance variation in easy and hard experimental settings
based on the shape regularity as visualized in Fig. 4b and
4c. Each case for robotic packing consists of 50 randomly
selected instances, which are randomly scaled by 0.8× to 1.2×
to improve the diversity. We collected 5,000 and 2,000 objects
combinations as the training and test sets. All experiments
are accelerated by an NVIDIA GeForce RTX 3090 GPU. We
conducted agents training and simulation in parallel to avoid
additional time cost during simulation.

B. Evaluation Metrics

To evaluate the packing effectiveness, we utilize three
metrics including the compactness, pyramidality, stability and
average number of packed objects. Compactness evaluates
space utilization of object arrangement, while pyramidality
measures available space for subsequent object packing. Sta-
bility demonstrates the difference between the planned object
positions and orientation with the actual ones after placement.
We also report the average time cost per object for efficiency
evaluation.

C. Hyperparameter Discussions

In this section, we discuss the influence of important hy-
perparameters on our hierarchical reinforcement framework
including the maximum number of objects K for policy
generation of the sequence planning module, the search inter-
vals for placement orientation selection and the resolution of
heightmaps. According to the ablation study on easy cases,
users can select the optimal hyperparameter settings based
on the requirements including effectiveness and efficiency of
packing.

Discussion on maximum number K in the sequence
planning module: The maximum number of objects K for
policy generation of the sequence planning module determines
the size of search space during the sequence planning, because
the number of unpacked objects is usually extremely large. To
investigate the impact on packing effectiveness and efficiency,
we set K as 0 (same as sorted by bounding box size), 10,
20 and 30 respectively in our experiments with 50 objects
for packing. Table I shows the results, where we observe
significant performance improvement with K from 0 to 20
and slight enhancement with K larger than 20. Therefore, We
set K to 20 in other experiments to achieve the satisfying
trade-off between the effectiveness and efficiency.

Discussion on search intervals of placement orienta-
tions: To investigate the influence on packing effectiveness

TABLE II: The performances with different search intervals
(SI) of orientations in easy settings.

SI of ψ SI of ϕ,θ C P S # Obj. Lat.(s)

π/2
π/2 0.456 0.766 0.836 40.38 0.97
π/4 0.457 0.768 0.838 40.42 2.67

π/4
π/2 0.457 0.767 0.836 40.41 1.51
π/4 0.458 0.769 0.838 40.46 4.49

TABLE III: The performance in easy settings for different
input resolutions.

Resolution C P S # Obj. Lat.(s)
100×100 0.442 0.750 0.819 39.45 0.64
200×200 0.456 0.766 0.836 40.38 0.97
400×400 0.460 0.769 0.840 40.63 2.53

and efficiency, we set search intervals for the Euler angles
including roll, pitch and yaw as π/2 and π/4 respectively.
Table II demonstrates the results, where enlarging the search
space for the Euler angles of placement orientation only
slightly enhance the performance while significantly increases
the latency. Because most objects are stable in flat surface
for initial orientations and the minimal interval between two
consecutive stable orientations is π/2 for roll and pitch, the
similar performance is observed where the search interval of
π/4 and π/2 are employed respectively. The initial orientation
in yaw usually enforces objects to nearly fit the box wall,
and rotating the object in yaw with the intervals of π/2 can
keep the property with high space utilization ratio. Therefore,
changing the search interval from π/4 to π/2 does not signifi-
cantly affect the performance. Objects with centrosymmetry in
the above axis also obtain equivalence of different rotational
angles. Since the search space is exponentially amplified by
the search intervals, we set the search intervals for raw, pitch
and yaw as π/2 in other experiments to achieve the acceptable
accuracy-complexity trade-off.

Discussion on resolution of heightmaps: The resolution
of heightmaps determines the size of search space during
position selection. Lower resolution can cause performance
loss due to the shrunk search space, while higher resolution
costs more time in inference. To investigate the influence
of input resolutions, we conduct experiments on different
input resolutions. Table III shows the results, where the
input resolution of 200×200 outperforms that of 100×100 in
space utilization ratio and only slightly underperforms that
of 400×400 with significantly reduced latency. Therefore, we
select the 200×200 resolution in most experiments for better
effectiveness-efficiency trade-offs.

D. Comparison with Baseline Methods

Results on easy cases: Objects with regular shapes such
as boxes and cans are error-tolerant in packing, and those
with irregular shapes such as power drills and scissors require
extremely precise arrangement to avoid collision during place-
ment. Therefore, we evaluate the packing planning methods in
easy and hard experimental settings as visualized in Fig. 4b
and 4c. The baseline methods are constructed in the following:
replacing the sequence planning module (SP) by sorting the
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TABLE IV: The compactness, pyramidality, stability, average
number of packed objects and latency per object for different
methods in easy settings.

Methods C P S # Obj. Lat.(s)
Random 0.253 0.419 0.138 21.84 -

B-Box Seq + HM 0.438 0.746 0.716 39.19 1.27
B-Box Seq + PP 0.451 0.758 0.827 40.07 0.62

SP + HM 0.442 0.752 0.724 39.43 1.63
PackIt-Heuristic 0.417 0.712 0.663 35.28 0.17
Stable HM [1] 0.443 0.753 0.882 39.49 2.38
SP + PP (Ours) 0.456 0.766 0.836 40.38 0.97

TABLE V: The compactness, pyramidality, stability, average
number of packed objects and latency per object for different
methods in hard settings.

Methods C P S # Obj. Lat.(s)
Random 0.216 0.382 0.104 19.33 -

B-Box Seq + HM 0.385 0.673 0.678 34.82 1.59
B-Box Seq + PP 0.415 0.703 0.760 36.26 0.63

SP + HM 0.392 0.676 0.683 34.98 2.05
PackIt-Heuristic 0.367 0.643 0.649 32.48 0.17
Stable HM [1] 0.397 0.695 0.834 35.61 2.60
SP + PP (Ours) 0.423 0.716 0.775 37.28 0.97

volume of bounding box for all objects (B-Box Seq) and
substituting the placement planning module (PP) by the HM
heuristic [1]. The PackIt-Heuristic method [20] utilized vol-
ume order to select objects, Bottom-Left-Back Fill for position
and dimension length order for orientation. The stable HM [1]
deployed strict force balance constraints on the basis of HM
heuristic. Table IV demonstrates compactness, pyramidality,
stability, average number of packed objects and latency per
object for different methods in easy experiments. Compared to
the baseline with heuristic sequence and placement algorithms,
employing our placement planning module packs increases
the number of packed objects by 0.88 (40.07 vs. 39.19) with
higher compactness, pyramidality, stability and half of the
latency. Utilizing our sequence planning module to replace
HM heuristics also improves performance, as the sequence
planning module prefers to pack instances with irregular shape
later and guarantee evenness at lower levels in the box. Fusing
the sequence and placement planning modules, our method
outperforms the baseline by packs 1.19 more objects (40.38
vs. 39.19) with 0.30 seconds less latency per object (0.97s vs.
1.27s). Since we employ heightmaps for object representation
without RGB textures, our method can be generalized to
unseen objects without significantly performance dropping.
Fig. 5 shows an example for packing 25 irregular objects
with different packing methods, where our method achieves
the highest space utilization ratio. The parameter number of
our agent is 10.23MB, and the training cost of our method is
16 GPU hours in average.

Results on hard cases: The heightmap resolution for
heuristic packing methods is limited due to the high com-
putational complexity, which performs poorly on the space
utilization and collision prevention for irregular object pack-
ing. On the contrary, our method directly generate the optimal
packing sequence and placement by one forward pass, and
the fine-grained visual clues represented by high-resolution
images can be considered efficiently. Table V shows the per-

(a) (b) (c)

Fig. 6: The physical experiment of our method. (a) Our
experimental packing setup. The grasp and placement are
implemented by a UR5 robot equipped with a parallel-jaw
gripper. (b) and (c) are examples of a 10-item placement in
simulation and real world.

formance of different methods in hard experimental settings.
Our framework outperforms more significantly for hard cases
on effectiveness compared with the easy experimental settings,
because the irregular object packing is sensitive to placement
position and the space utilization ratio is affected by the
arrangement more obviously. Moreover, HM usually degrades
into grid search on higher space dimensions in irregular object
packing, so that our method significantly decreases the average
time cost.

E. Experiments on Physical Platform

To verify the feasibility of our method on real robot
manipulators, we conducted experiments for 10-item packing
problem on known objects. As shown in Fig. 6(a), we utilize
a UR5 robot equipped with a parallel-jaw RG2 gripper for
grasp and placement. We employ three RealSense D435 depth
camera, including one on UR5 to obtain box heightmaps and
two observing workspace for object perception. The packing
box size is 30cm×30cm×30cm, and the items are from the
YCB object dataset. Categories and geometry details of objects
are captured by the two cameras observing the workspace
with perception module based on [43]. We generated the six
principal view heightmaps of objects in the simulator based
on estimated categories and deformations, and obtained the
heightmap of box through the camera on the UR5 arm. After
sequence and placement planing, we leverage models in [44]
to generate grasp and utilize the top-down path for placement.
Experiments show that our method can be implemented by real
robot manipulators and the objects can be packed as planned.
The demonstration video is provided in the supplementary
material.

V. CONCLUSION AND LIMITATIONS

In this paper, we have proposed a deep hierarchical rein-
forcement learning approach to simultaneously generate pack-
ing sequence and placement arrangement for irregular object
packing planning. The sequence planning module extracts
features from six principal view heightmaps of all instances to
predict the next object for packing, and the placement planning
module yields the optimal position and orientation without
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collision and space waste for the selected object. Extensive
experiments demonstrates the effectiveness of our approach.

The limitations of our approach can be summarized as
follows. Representing 3D shape with 2D heightmaps requires
multiple viewpoints, and causes high computational cost and
information loss during inference. When deploying our method
in real world, the perception errors of object shape and the
placement infeasibility may decrease the space utilization ratio
and even cause the package to fail. Therefore, enhancing
the computational efficiency and the robustness in real-world
deployment will be interesting future works.
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