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Abstract— Accurately estimating the shape of objects in dense
clutters makes important contribution to robotic packing, be-
cause the optimal object arrangement requires the robot plan-
ner to acquire shape information of all existed objects. However,
the objects for packing are usually piled in dense clutters with
severe occlusion, and the object shape varies significantly across
different instances for the same category. They respectively
cause large object segmentation errors and inaccurate shape
recovery on unseen instances, which both degrade the perfor-
mance of shape estimation during deployment. In this paper, we
propose a category-level shape estimation method for densely
cluttered objects. Our framework partitions each object in the
clutter via the multi-view visual information fusion to achieve
high segmentation accuracy, and the instance shape is recovered
by deforming the category templates with diverse geometric
transformations to obtain strengthened generalization ability.
Specifically, we first collect the multi-view RGB-D images of
the object clutters for point cloud reconstruction. Then we
fuse the feature maps representing the visual information of
multi-view RGB images and the pixel affinity learned from the
clutter point cloud, where the acquired instance segmentation
masks of multi-view RGB images are projected to partition the
clutter point cloud. Finally, the instance geometry information
is obtained from the partially observed instance point cloud
and the corresponding category template, and the deformation
parameters regarding the template are predicted for shape
estimation. Experiments in the simulated environment and real
world show that our method achieves high shape estimation
accuracy for densely cluttered everyday objects with various
shapes.

I. INTRODUCTION

Robotic packing systems [21], [1], [34], [41], [13], [14]
play a key role in warehouse automation with the benefits
of reduced uptime, high throughput, and low accident rate
compared with the labor-intensive approaches. The goal of
robotic packing is to stow objects into constrained space such
as shipping boxes. In robotic packing systems, accurate shape
estimation of objects in dense clutters is required because the
planner has to obtain the shape information of all objects for
packing in order to yield the optimal object arrangement in
the packing boxes. For example, packing toys with different
shapes leads to various placement locations and orientations,
and wrong shape estimation of toys may cause packing
failure due to object collision and space waste.
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Fig. 1. An example of category-level shape estimation for densely cluttered
objects.

Encoder-decoder architectures have been widely employed
in other fields [31], [32], and have recently been utilized
for object shape estimation. RGB images [25], occupancy
voxels [33], depth maps [23] and SDF voxels [10] of
objects are embedded into the latent space with object
semantics, which is followed by shape reconstruction with
the decoder. Since the object size varies across instances in
the same category, the object size is predicted by encoding
the geometric information with the pre-defined parametric
models for fine-grained shape estimation [10], [18], [8],
[11], [16]. However, conventional object shape estimation
methods face two challenges. First, the objects for packing
are usually piled in dense clutters, and the severe occlusion
among objects fails to provide informative visual clues for
shape recovery. Second, the shape varies significantly for
different objects in the same category, and the inaccurate
shape recovery on objects with novel appearance decreases
the shape estimation precision in deployment.

In this paper, we present a category-level shape estimation
method for densely cluttered objects. Our method segments
each instance in the clutter by fusing the multi-view visual
information, and recovers the object shape by deforming the
category templates. Hence, high segmentation precision and
high generalization ability are achieved to accurately estimate
the shape of all existed objects. More specifically, we collect
the multi-view RGB-D images of the clutter and reconstruct
the point cloud of the scene, which are utilized as the visual
input of the instance segmentation module. The feature maps
representing visual information of multi-view RGB images
and the pixel affinity learned from the clutter point cloud are
fused to generate accurate instance segmentation masks for
multi-view RGB images, which are projected to the point
cloud in each view for label assignment. By merging the
point cloud partitions in each view with similar spatial oc-
cupancy, we obtain the observed incomplete point cloud for
each object in the clutter. The observed instance point cloud
and the corresponding category template are jointly utilized
to regress the template deformation parameters for scale and
surface transformation. Fig. 1 demonstrates an example of



category-level shape estimation for densely cluttered objects,
where the complete point cloud of each existed instance is
predicted for the object arrangement planner in robotic pack-
ing. Extensive experiments in the simulated environment and
real world indicate that our framework accurately recovers
the point cloud of objects in dense clutters with diverse
appearances.

II. RELATED WORK

Visual segmentation in cluttered scenes: robotic ma-
nipulation tasks are usually challenging due to the severe
occlusion in dense clutters, and object segmentation in
cluttered scenes has aroused extensive interest in robotic
visual perception. Existing visual segmentation for densely
cluttered objects can be categorized into two types: seg-
mentation based on RGB-D images [35], [37], [36] and
point cloud [12], [38]. For the first regard, robotic grasping
[28], [39], [24], [40], [7] was usually guided by a visual
segmentation module for the planner to generate the optimal
grasp pose. In order to segment the invisible objects in the
clutter for accurate visual perception, Xie et al. [37] acquired
initial rough masks according to depth images and then
refined the predictions with RGB images. They further mined
the relationship among objects via graph neural networks
to generate more accurate instance mask refinement [36].
For visual segmentation methods based on the point cloud,
Dong et al. [12] extracted the point-wise features with the
constraint that embedding of points from the same instance
should be similar and vice versa, so that the clustered index
in the feature space could be leveraged as the segmentation
masks. Xu et al. [38] inferred the geometric instance center
via the learned point-wise features, and the remaining points
were clustered into the closest center for segmentation. Nev-
ertheless, the severe occlusion among objects cannot provide
informative visual clues for accurate instance segmentation.

Object shape estimation: The goal of object shape
estimation is to infer the 3D shape of objects given partial or
sparse observations. Early attempts [5], [15] adopted surface
reconstruction techniques via shape models to complete point
clouds into dense surfaces. However, these methods can
only model one object instance at a time with geometric
priors, and the generalization ability to objects with different
shapes is insufficient. Data-driven approaches [23], [33] for
3D shape estimation were presented which leveraged the
encoder-decoder architecture to embed the object geometry
and reconstruct the full shape sequentially. Rock et al. [23]
retrieved similar objects from the database with deformation
to recover the original shape. Moreover, simultaneously
estimating object shape and pose [2], [22] can benefit each
other due to their strong correlation. Since object shape varies
significantly across different instances in the same category,
category-level shape estimation [8], [18], [6], [30], [11], [17]
generates the prediction with the category priors to enhance
the generalization ability on unseen objects in deployment.
Wang et al. [30] learned the canonical shape representation in
the normalized object coordinate space to regress the object
size regarding the category priors. However, existing methods

fail to accurately recover the shape of unseen objects due to
the large intra-class variation.

III. APPROACH

In this section, we first briefly introduce the problem of
shape estimation for densely cluttered objects and the overall
pipeline, and then detail the instance segmentation of object
clutters by fusing the information from multi-view RGB
images and point clouds. Finally, we present the category-
level shape estimation for partially observed instances via
template deformation.

A. Problem Statement and Overall Pipeline

The goal of shape estimation for densely cluttered objects
is to predict the point cloud of every existed object in
the clutter given the category template, so that the robotic
packing system can yield the optimal object arrangement
plan with object information. The challenges of achieving
precise shape estimation are two-fold. First, the occlusion
among cluttered objects disables the visual perception mod-
ule to accurately recognize the object categories and segment
each instance for sequential shape estimation. Second, the
object shape varies significantly for instances in the same
category, and objects with different shapes in deployment
require a high generalization ability of the shape estimation
module. To address these, we fuse the information from
multi-view RGB images and clutter point cloud by passing
the pixel affinity for instance segmentation, and deform the
category template with diverse geometric transformation for
generalizable shape estimation.

Fig. 2 demonstrates the overall pipeline of our framework.
The object clutters are observed by one overhead and four
side-view RGB-D cameras, and the side-view cameras are
uniformly placed in a horizontal plane. The point cloud of
the object clutters is obtained by projecting that converted
from the depth image of all cameras, which is combined
with the multi-view RBG images to function as the input of
our framework. The pixel affinity learned from the clutter
point cloud via SoftGroup [27] is fused into the predicted
feature maps of multi-view RGB images acquired via Yolact
[3], which assigns the instance labels for the point cloud
projected inside the mask of each view. The pixel affinity
generation process named SSC is proposed by [42]. By
merging the point cloud partition across views with similar
spatial occupancy, the observed point cloud for each instance
is obtained. The instance-wise point cloud partition and the
corresponding category template are leveraged to regress the
geometric transformation parameters, where the box-cage
based deformation is applied for shape estimation.

B. Instance Segmentation of object clutters

Predicting the instance-wise mask of densely cluttered
objects makes significant contribution to shape estimation,
because categories for different objects and instance-wise
point clouds are utilized to regress the geometric transfor-
mation parameters regarding category templates. Instead of
directly segmenting the clutter point cloud, we employ the
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Fig. 2. The overall pipeline of our framework, which consists of the instance segmentation module and the shape estimation module.

instance masks of RGB images across views to assign labels
to the point cloud inside the masks, as texture information
significantly enhances segmentation masks for cluttered ob-
jects compared with geometry information. Since instance
masks of RGB images across views may represent the same
object, we should verify the object consistency across views
based on predicted categories and spatial relationships to
avoid false positives and negatives. The point cloud partitions
from different views that share the same semantic labels and
similar spatial occupancy are iteratively merged to yield the
instance segmentation mask of the clutter point cloud. Let
us denote the ith instance mask of the point cloud at the tth
merging time as Pt

i , the instance mask of the point cloud is
updated as follows:

Pt+1
i = Pt

i ∪{SSSk
m|ck

m =C0
i ,dch(SSSk

m,P
t
i )< h}, (1)

where SSSk
m represents the mth point cloud partition in the kth

view, and ck
m and C0

i respectively mean the label of SSSk
m and

Pt
i respectively. dch(xxx,yyy) stands for the chamfer distance

between point cloud xxx and yyy, and h is the threshold where
point clouds with chamfer distance less than h are regarded
to have similar spatial occupancy. Each point cloud partition
is regarded as an instance at the initialization of merging,
and the mergence stops to generate the instance segmentation
masks for the clutter point cloud until no point cloud partition
is enlarged.

Accurate instance segmentation of RGB images is crucial
to precisely acquire the observed point cloud of each object
for shape estimation. Severe occlusion among objects usually
leads to ambiguous masks border of RGB images with in-
correct predictions. Rather than directly predicting the masks
of the multi-view RGB images, we fuse the pixel affinity
learned via the clutter point cloud with the feature maps
of RGB images to generate precise instance-wise masks for
RGB images. The pixel affinity demonstrates the instance
consistency among pixels, where the element in the ith row
and jth column is set to one if the ith and jth pixels represent
the same object and vice versa. Inspired by [42], we generate
the pixel affinity AAAk of the RGB image in the kth view based
on the point cloud feature of the object clutters. For the

kth view, the intra-class feature that fuses the information of
pixels within each category and the inter-class feature which
considers the visual clues from other categories are defined
as follows:

YYY k
intra = AAAkR(XXXk

2D), YYY k
inter = (111−AAAk)R(XXXk

2D), (2)

where R(XXX) means reshaping the spatial dimensions of
XXX to match the matrix multiplication, and 111 is an all-one
matrix with the same size as AAAk. Meanwhile, XXXk

2D stands
for the RGB image feature for the kth view. Finally, we
concatenate the RGB feature, the intra-class feature, and the
inter-class feature to aggregate the information for accurate
instance segmentation of densely cluttered objects. Denoting
the element in the ith row and jth column of AAAk as ak

i j, we
aim to minimize the difference between the predicted pixel
affinity matrix and groundtruth via the binary cross-entropy:

Lce =− 1
KN2

K

∑
k=1

N

∑
i, j=1

ck
i j logak

i j +(1− ck
i j) log(1−ak

i j), (3)

where ck
i j ∈ {0,1} is the groundtruth label of ak

i j, and K
is the number of views for visual information collection.
In order to learn the correct semantic correlation for pixel
affinity, we optimize the precision Lp and recall Lr that reveal
the performance of intra-class features, and maximize the
specificity Ls that depicts the inter-class feature quality:
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∑
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, (4)

The overall learning objective for instance segmentation
considers the isolated pixel affinity correctness by binary
cross-entropy and the global affinity correctness indicated
by precision, recall, and specificity via the following form:

Lseg = Lce −λ (Lp +Lr +Ls), (5)

where λ is a hyperparameter that controls the importance
of global correctness in the predicted pixel affinity. By
fusing the multi-view visual clues of the object clutters,
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Fig. 3. Examples of scale and surface transformation for category-level
templates.
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Fig. 4. Selected objects from YCB and OCRTOC datasets for training and
test in our experiments.

we strengthen the instance segmentation accuracy of RGB
images and assign precise labels for instance-wise point
cloud partition for subsequent shape recovery.

C. Category-level Shape Estimation of Cluttered Objects

Acquiring the shape of each object existing in the clutter
is necessary for the object arrangement planner in robotic
packing systems. The point cloud partition for each instance
provides visual clues with partial observation and estimating
the shape of each object is equivalent to recovering the
complete point cloud. Since objects from the same category
share similar geometric structures [26], we apply a box-
cage based template deformation method to enhance the
generalization ability of the shape estimation module on
intra-class variation inspired by Fs-Net [8]. Fig. 3 shows an
example of box-cage based deformation techniques including
scale and surface transformation. The predicted shape can
be obtained by modifying the vertices of the template in the
following:

VVV d = Fsur ◦Fsca(VVV 0), (6)

where VVV d and VVV 0 respectively represent vertices of objects
after and before deformation. Denoting the ith vertex in
object vertices VVV as VVV i, the scale transformation function
is defined as follows:

Fsca(VVV iii) = [αxV i
x ,αyV i

y ,αzV i
z ], (7)

where the V i
x , V i

y , V i
z indicates the component in the x, y,

z axis for the vertex VVV i, and αx, αy and αz are the scaling
factors for object size adjustment. The surface transformation
function changes the area of the top and bottom surfaces for
the box-cage in order to achieve diverse shape variations of
symmetrical categories:

Fsur(VVV iii) = [V i
x +

ε(V i
z −V ↓

z )

V ↑
z −V ↓

z
V i

x ,V
i
y +

ε(V i
z −V ↓

z )

V ↑
z −V ↓

z
V i

y ,V
i
z ], (8)

where V ↓
z and V ↑

z demonstrate the vertical coordinates of
vertices with minimal and maximal z value, and ε is the
surface factor to change the ratio of top and bottom surface

(a) Groundtruth (b) RGB (c) Point Cloud (d) Ours

Fig. 5. The visualization of instance segmentation results for (a)
groundtruth, (b) RGB-only (c) point cloud-only and (d) our methods, where
partitions in different colors represent various classes.

area for the box-cage. We construct the mesh of deformed
objects with the adjusted vertices and original triangles from
the template, and uniformly sample the object point cloud
from the mesh for shape recovery. To regress scaling factors
and surface factors in template deformation, we leverage 3D
graph convolutional networks [19] to parameterize them for
each object, where instance-wise point cloud partition and
vertices of corresponding category templates are employed
as the input. The objective to train the shape estimation
module is to minimize the Chamfer distance between the
predicted point cloud and the groundtruth. By learning the
correspondence pattern between the partial observation of
objects and the category template, the shape estimation
module reconstructs the complete point cloud for densely
cluttered objects with diverse appearances.

IV. EXPERIMENTS

In this section, we conduct extensive experiments in
simulated environments (Pybullet [9]) and the real world
to evaluate our framework. The goal of the experiment
is to verify that (1) our shape estimation framework for
densely cluttered objects can accurately generate complete
point clouds of all existed objects, (2) the multi-view visual
information fusion via pixel affinity passing significantly
enhance the instance segmentation performance for object
clutters, (3) deforming the category template with diverse
geometric transformation according to predicted parameters
strengthens the generalization ability.

A. Implementation Details and Evaluation Metrics

All objects utilized in our experiments come from the
YCB dataset [4] and OCRTOC dataset [20]. We only select
a subset of 24 objects for training and 14 objects for testing
to construct our scenes including some generic objects such
as boxes, cans, markers, sugar, bananas, pears, mugs, and
bowls, where their fine-grained category names are replaced
by coarse class names in category-level shape estimation.
Fig. 4 visualizes the selected objects in our experiments,
where most objects in the test scenarios do not appear in the
training scenes. We employ the mean shape of all training
objects in each category as the template. For simulated ex-
periments, we deform the template with random parameters
in scale and surface transformation for object generation to
diversify the shape of instances in training and test set. We
collected 1,750 and 350 RGB images from different views
with pixel annotation and the corresponding clutter point
cloud as the training and test set for instance segmentation



TABLE I
THE MAP AND AP WITH DIFFERENT IOU THRESHOLDS OF POINT CLOUD INSTANCE SEGMENTATION, WHERE RANDOM, EASY, NORMAL AND HARD

CASES ARE LEVERAGED FOR EVALUATION.

Methods Random Easy Normal Hard
mAP AP25 AP50 mAP AP25 AP50 mAP AP25 AP50 mAP AP25 AP50

RGB-only [3] 34.16 58.52 51.23 42.63 68.70 58.03 33.17 58.42 49.21 24.19 52.11 43.75
Point-only [27] 32.10 64.50 45.90 32.50 65.40 47.30 30.70 62.40 44.70 27.90 54.40 39.00

Ours 38.75 78.43 58.11 49.18 85.43 71.33 38.53 79.03 58.22 28.15 74.18 49.76

TABLE II
THE CD BETWEEN THE PREDICTED SHAPES AND THE GROUNDTRUTH

FOR GIVEN INSTANCE-WISE POINT CLOUD PARTITIONS.

Deformation Random Easy Normal Hard
None 71.12 39.71 62.17 147.77

Scale-only 67.25 38.00 58.84 139.02
Surface-only 69.39 38.82 60.55 143.54

Ours 63.66 36.27 55.67 131.46

module, and constructed 400 and 30 scenes which include
5-15 objects for training and testing respectively. Moreover,
we prepared 24 scenes containing 5-15 objects for evaluation
in real-world experiments.

Since our framework consists of the instance segmentation
module and the shape estimation module, we respectively
present three metrics to evaluate the above two individual
modules and the overall performance on category-level shape
estimation for densely cluttered objects. For instance seg-
mentation, we leverage the mean average precision (mAP)
of the point cloud masks with the IoU∈[0.5:0.05:0.95]. To
assess the shape estimation, we utilize the Chamfer distance
(CD) between the predicted and the groundtruth shape for
true positive segmentation predictions. The instance seg-
mentation module influences the precision and recall of the
segmentation masks, and the shape estimation module affects
the bounding box IoU between the predicted shape and
the groundtruth. To measure the overall performance of our
framework, we reconstruct the clutter point cloud by placing
the estimated object shape with known poses and report the
precision and recall of the reconstructed point cloud with
various bounding box IoU thresholds. Moreover, we also
provide the F1 score of the mean average precision and recall
for reference.

B. Simulated Experiments

We first demonstrate the performance of the instance seg-
mentation module with different visual information percep-
tion methods. Then we evaluate the shape estimation module
with given instance-wise point clouds across various template
deformations. Finally, we depict the overall performance of
category-level shape estimation for densely cluttered objects.

Results on instance segmentation: The random clutter is
constructed by dropping objects into the workspace, where
the landing point for each object is selected randomly. Since
the difficulty of instance segmentation is positively related
to the object density, we set up the object clutters with
5, 10 and 15 objects for easy, normal and hard scenarios
of instance segmentation. Table I demonstrates the mAP of
the instance segmentation masks of point clouds, where the
baseline methods contain instance segmentation only based

(a) (b) (c) (d) (e) (f)

Fig. 6. The visualization of (a) the observed instance point cloud for the
shape estimation module, (b) the groudtruth shape, (c) the predicted shape
without template deformation, (d) with only scale transformation, (e) with
only surface deformation and (f) with our framework.

on multi-view RGB images [3] and clutter point cloud [27].
Compared with the method that directly segments the point
cloud, we increase the mAP by 6.65% in random cases
because the texture information significantly enhances the
segmentation masks for cluttered objects. Meanwhile, our
framework also outperforms the baseline, which removes the
pixel affinity learned from the clutter point cloud by 4.56%
in hard cases, because fusing the scene information via the
clutter point cloud alleviates the segmentation errors caused
by occlusion. Fig. 5 visualizes the instance segmentation
masks of clutter point clouds for different methods. Only
leveraging the RGB images for segmentation fails to generate
accurate pixel-wise masks, and methods only utilizing point
cloud cannot assign the precise label to each partition.

Results on shape estimation: The baselines for compari-
son include utilizing the template as the predicted shape with-
out deformation, with only scale transformation, and with
only surface transformation. We apply the point cloud par-
tition for each object acquired by our instance segmentation
module as the input of the shape estimation module. Table II
demonstrates the Chamfer distance (CD) of different shape
estimation methods, and Fig. 6 visualizes several examples
of recovered shapes given the fixed partial observation of
object point cloud. Our framework significantly decreases
the CD compared with the baseline methods, which verifies
the effectiveness of diverse geometric information in shape
recovery including scale and surface transformation in shape
estimation of novel objects.

Results on shape estimation for densely cluttered
objects: By integrating the instance segmentation and the
shape estimation modules, we obtain the overall performance
on shape estimation for densely cluttered objects. Table III
illustrates the averaged precision and recall of the recon-
structed clutter point cloud with different IoU thresholds and
the mean ones with IoU from 0.1 to 0.55, where the F1 score
of the mean average precision and recall is also provided
for reference. For the chosen baseline methods, we only
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Fig. 7. An example of the estimated shape for densely cluttered objects via different methods including RGB image based and point cloud based instance
segmentation with our template deformation, surface-only and scale-only template deformation with our instance segmentation. The estimation results of
our method and the groundtruth are also demonstrated.

TABLE III
COMPARISON OF THE PRECISION AND RECALL WITH DIFFERENT IOU THRESHOLDS FOR THE SHAPE ESTIMATION OF RANDOM CASES. THE F1 SCORE

OF THE MEAN AVERAGE PRECISION AND RECALL IS PROVIDED FOR REFERENCE.

Methods Precision Recall F1 ScoreSegmentation Estimation mAP AP10 AP25 AP50 mAR AR10 AR25 AR50
RGB None 30.25 50.15 45.84 10.57 36.38 46.97 45.52 13.15 33.03
RGB Scale 43.33 49.48 50.05 46.58 51.60 47.59 46.95 45.35 47.10
RGB Surface 40.18 49.53 47.81 44.57 48.51 49.40 47.29 46.37 43.95
Point None 27.28 42.84 34.65 7.89 23.82 38.60 31.28 6.83 25.43
Point Scale 41.83 57.10 45.10 29.58 40.10 50.93 40.89 29.24 40.95
Point Surface 35.79 49.77 39.39 21.70 33.02 44.97 34.93 20.32 34.35

Fsnet [8] 43.73 62.87 53.31 43.95 47.83 66.77 52.16 45.48 45.69
Densefusion [29] 48.32 67.19 56.91 49.87 44.77 63.35 52.71 42.90 46.48

Ours 55.94 65.32 57.96 54.13 61.08 64.97 58.45 56.99 58.40

TABLE IV
COMPARISON ON THE PRECISION AND RECALL WITH DIFFERENT IOU
THRESHOLDS FOR SHAPE ESTIMATION OF REAL-WORLD EXPERIMENT.

Methods Precision Recall F1 ScoremAP AP25 mAR AR25
RGB-only 46.26 55.93 45.63 51.26 45.94
Point-only 38.43 40.61 42.48 49.97 40.35
Scale-only 50.43 56.15 41.43 46.50 45.49

Surface-only 40.14 49.35 36.11 40.58 38.02
Ours 54.26 59.82 50.15 53.22 52.12

employed the final predicted bounding boxes. Our framework
outperforms the baseline methods that combines different
instance segmentation and shape estimation techniques by a
sizable margin, which reveals that both instance segmentation
and shape estimation are necessary to achieve practical
category-level shape estimation for objects in dense clutters.
Our method also achieves higher precision and recall than the
state-of-the-art methods in shape estimation because of the
accurate partial observation of objects and diverse template
deformation.

C. Real-world Experiments

Fig. 7 shows several quantitative examples for estimating
the shape of all objects in the dense clutters. RGB-only
and point-only represent the methods only leveraging the
RGB images and point cloud for instance segmentation
following our template deformation techniques. Surface-only
and scale-only depict the approaches that utilize our instance
segmentation module following the surface and scale trans-
formation for template deformation respectively. Compared
with the RGB-only and point-only methods, our framework
accurately segments each instance without missing objects
because of global information fusion. The surface-only and
scale-only methods cannot precisely estimate the shape of
each instance due to the limited geometric transformation
of templates. For example, the instant noodle bucket in Fig.
7 uses the same bucket template as the potato chip bucket

applies in template deformation, and our framework can
effectively estimate the shape of the instant noodle bucket
with the help of surface transformation even their shapes
differ obviously. Table IV illustrates the average precision
and recall with different IoU thresholds of our framework in
real-world experiments. We also provide the F1 score of the
mean average precision and recall for reference. Our frame-
work outperforms baseline methods, which further verifies
the effectiveness of both our instance segmentation and shape
estimation modules in practical scenarios. The difficulties in
the simulated and real-world scenarios are similar due to
the same object number setting. The mAP acquired in the
real-world experiment is only 1.68% lower than that in the
simulated environment, which reveals the high generalization
ability of our method to real-world cluttered object shape
estimation.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a category-level shape
estimation framework for densely cluttered objects. We col-
lect the multi-view RGB-D images of the object clutters and
reconstruct the point cloud of the whole scene for visual clue
representation. The feature maps of multi-view RGB images
and the pixel-wise similarity learned from the clutter point
cloud are fused via affinity passing for accurate instance
segmentation of RGB images, which assigns correct labels
for point clouds of each view to acquire the instance point
cloud with mergence. The correspondence pattern between
the instance-wise point cloud partition and the category
template is extracted to predict the parameters of geometric
transformation regarding templates for shape estimation.
Extensive experiments in the simulated environment and real
world demonstrate the effectiveness of the proposed method.
In future work, we plan to reduce the computational and
storage complexity of pixel affinity prediction and diversify
the geometric transformation for template deformation.
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