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Figure 1. Gaussian World Model (GWM) is a novel branch of world model that predicts dynamic future states and enables robotic
manipulation based on the 3D Gaussian Splatting representation. It facilitates action-conditioned 3D video prediction, enhances visual
representation learning for imitation learning, and serves as a robust neural simulator for model-based reinforcement learning.

Abstract

Training robot policies within a learned world model
is trending due to the inefficiency of real-world interac-
tions. The established image-based world models and poli-
cies have shown prior success, but lack robust geometric
information that requires consistent spatial and physical
understanding of the three-dimensional world, even pre-
trained on internet-scale video sources. To this end, we
propose a novel branch of world model named Gaussian
World Model (GWM) for robotic manipulation, which re-
constructs the future state by inferring the propagation of

Gaussian primitives under the effect of robot actions. At its
core is a latent Diffusion Transformer (DiT) combined with
a 3D variational autoencoder, enabling fine-grained scene-
level future state reconstruction with Gaussian Splatting.
GWM can not only enhance the visual representation for
imitation learning agent by self-supervised future predic-
tion training, but can serve as a neural simulator that sup-
ports model-based reinforcement learning. Both simulated
and real-world experiments depict that GWM can precisely
predict future scenes conditioned on diverse robot actions,
and can be further utilized to train policies that outperform
the state-of-the-art by impressive margins, showcasing the
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initial data scaling potential of 3D world model.

1. Introduction
Humans construct predictive world models from limited
sensory input, allowing them to anticipate future outcomes
and adapt to new situations [11, 17]. Inspired by this ca-
pability, world model learning has driven major advances
in intelligent agents, enabling strong performance in au-
tonomous driving [13, 25, 26, 76, 94] and gaming [1, 17–
21, 62, 85]. As intelligent agents increasingly engage with
the physical world, advancing world model learning for
robotic manipulation becomes an essential research direc-
tion, as it could ideally empower robots to reason about in-
teractions, predict physical dynamics, and adapt to diverse
unseen environments.

This naturally raises the following question: How to ef-
fectively represent, construct, and leverage the world model
to enhance robotic manipulation? Such demand poses sig-
nificant challenges to existing representations and models.
• Necessity of 3D Representation High-capacity architec-

tures [24, 73] and internet-scale pre-training have estab-
lished video-based generative models as powerful tools
for capturing world dynamics information, which signifi-
cantly enhances policy learning [78, 83]. However, their
reliance on image inputs makes them susceptible to un-
seen visual variations (e.g., lighting, camera pose, tex-
tures, etc.) [39], as they lack 3D geometric and spatial
understanding. While RGB-D and multi-view [15, 16] se-
tups attempt to mitigate this gap, implicitly aligning im-
age patch features within a coherent 3D space remains
challenging [58, 96], leaving the robustness concern un-
resolved. This underscores the need for representations
that integrate fine visual details with 3D spatial informa-
tion to enhance world modeling for robotic manipulation.

• Efficiency and Scalability To identify a 3D representa-
tion that preserves both 3D geometric structure and fine
visual details from 2D images, multi-view 3D reconstruc-
tion methods such as Neural Radiance Field (NeRF) [53]
and 3D Gaussian Splatting (3D-GS) [34] offer natu-
ral solutions. Among them, 3D-GS is particularly ap-
pealing due to its explicit per-Gaussian modeling of 3D
scenes, marrying efficient 3D representations like point
clouds with high-fidelity rendering. However, since these
methods primarily rely on offline per-scene reconstruc-
tion, their computational demands pose significant chal-
lenges [47, 87] on applying them in robotic manipula-
tion, especially for Model-based Reinforcement Learn-
ing (MBRL), limiting their scalability.
To this end, we propose Gaussian World Model

(GWM), a novel 3D world model that integrates 3D-GS
with high-capacity generative models for robotic manipula-
tion. Specifically, our approach combines recent advance-

ments in feed-forward 3D-GS reconstruction with Diffusion
Transformers (DiTs), enabling fine-grained future scene re-
construction through Gaussian rendering conditioned on
current observations and robot actions. To achieve real-time
training and inference, we design a 3D Gaussian Variational
Autoencoder (VAE) to extract latent representations from
3D Gaussians, allowing the diffusion-based world model to
operate efficiently in a compact latent space. With this novel
design, we demonstrate that GWM enhances visual repre-
sentation learning, improving its role as a visual encoder
for imitation learning while also serving as a robust neural
simulator for model-based Reinforcement Learning (RL).

To comprehensively evaluate GWM, we conduct exten-
sive experiments in action-conditioned video prediction,
imitation learning, and model-based RL settings, cover-
ing 31 diverse robotic tasks across 3 domains. For real-
world evaluation, we introduce a Franka PnP task suite with
20 variations, encompassing both in-domain and out-of-
domain settings. For the ablation study, we evaluate both
perceptual metrics and success rates to verify the effective-
ness of each building blocks. GWM consistently outper-
forms previous baselines, including state-of-the-art image-
based world models, offering notable advantages and high-
lighting its data-scaling potential.

In summary, our main contributions are threefold.
• We introduce GWM, a novel 3D world model that is in-

stantiated with a Gaussian diffusion transformer and a
Gaussian VAE for efficient dynamic modeling. GWM
learns to predict accurate future states and dynamics in a
scalable end-to-end manner without human intervention.

• GWM can be easily integrated into offline imitation learn-
ing and online reinforcement learning with superior effi-
ciency, depicting impressive scaling potential in learning-
based robotic manipulation.

• We demonstrate the efficacy of GWM through extensive
experiments in two challenging simulation environments,
which improves the previous state-of-the-art baselines by
a large margin of 16.25%. Furthermore, we validate
its practicality in real-world scenarios, where GWM im-
proves a typical diffusion policy by 30% with 20 trials.

2. Related Work
World Models World models capture scene dynamics
and enable efficient learning by predicting future states
based on current observations and actions. They have been
widely explored in autonomous driving [13, 25, 26, 76, 94,
98], game agents [1, 17–21, 62, 85], and robotic manipula-
tion [22, 63, 79]. Early works [17–22, 52, 61–63, 85, 92]
learn a latent space for future prediction, achieving strong
results in both simulated and real-world settings [79]. How-
ever, while simplifying modeling, latent representations
struggle to capture the world’s fine details. Recent advances
in diffusion models [23, 67, 68] and transformers[60, 73]



have shifted world modeling toward direct pixel-space mod-
eling [1, 83], enabling fine-grained detail capture and large
scale learning from internet videos. Yet, image-based mod-
els often lack physical commonsense [4], thus limiting their
applicability in robotic manipulation.

Gaussian Splatting 3D-GS [34] represents scenes us-
ing 3D Gaussians, which are efficiently projected onto
2D planes via differentiable splitting. Compared to im-
plicit representations like NeRF [53], it offers greater ef-
ficiency, benefiting applications such as invasive surgery
[45], SLAM [33], and autonomous driving [95]. This ad-
vantage extends to 4D dynamic modeling [27, 48, 80] as the
3D Gaussians, similar to point clouds, are spatially mean-
ingful. However, the offline per-scene reconstruction re-
quired by these methods imposes computational challenges
for real-time applications like robotic manipulation. Re-
cent works [6, 12, 70, 81, 82, 90, 93, 97] address this issue
by learning generative mappings from pixels to Gaussians
using large-scale datasets, but still rely on known camera
poses, restricting scalability. A parallel effort [36, 66, 75]
explores feed-forward novel-view synthesis from unposed
images, leveraging the predicted point map as a proxy for
explicit multi-view alignment. Building on these advances,
this work develops a scalable Gaussian world model from
unposed images, ensuring spatial awareness and scalability
for policy training.

Visual Manipulation Building vision-driven robots with
human-like capabilities is a long-standing challenge. Vi-
sual imitation learning methods [5, 35, 38, 44, 71] mim-
ics expert demonstrations using various visual represen-
tations, such as point clouds [7, 14], voxels [43, 65],
NeRFs [10, 31, 40, 42, 64, 87], and 3D-GS [47]. While
effective for learned tasks, these models struggle in unseen
real-world scenarios [49, 50]. RL fills in this gap by refin-
ing policies through trial and error but requires costly real-
world rollouts. Therefore, many methods adopt sim-to-real
transfer, i.e., deploying RL policies learned in digital twins
of the world for task execution. Nonetheless, scalability re-
mains a challenge due to their reliance on predefined as-
sets [3, 54, 74] or labor-intensive conversion of real-world
objects into simulation [9, 37, 41, 46, 59]. To address lim-
itations, GWM focuses on providing both a stronger visual
representation for imitation learning and an efficient neural
simulator for visual RL to enable more effective and scal-
able robotic manipulation.

3. Gaussian World Model
The overall pipeline of our GWM method is shown in Fig-
ure 2, in which we construct a Gaussian world model to
infer the future scene reconstruction represented by 3D
Gaussian primitives. Specifically, we encode the real-
world vision inputs into latent 3D Gaussian representations

(Sec. 3.1) and leverage a diffusion-based conditional gen-
erative model to learn the dynamics over representations
given robot states and actions (Sec. 3.2). We demonstrate
that GWM can be flexibly integrated into both offline imita-
tion learning and online model-based reinforcement learn-
ing for diverse robotic manipulation tasks (Sec. 3.3).

3.1. World State Encoding
Feed-forward 3D Gaussian Splatting Given single or
two-view image inputs I = {I}i={1,2} of a world state,
our goal is to first encode the scene into 3D Gaussian rep-
resentations for dynamics learning and prediction. 3D-GS
represents a 3D scene with multiple unstructured 3D Gaus-
sian kernels G = {xp,σp,Σp, Cp}p∈P , where xp, σp, Σp,
and Cp represent the centers, opacities, covariance matri-
ces, and spherical harmonic coefficients of the Gaussians,
respectively. To obtain the color of each pixel from a given
viewpoint, 3D-GS projects the 3D Gaussians onto the im-
age plane and computes the pixel color as:

C(G) =
∑
p∈P

αpSH(dp; Cp)
p−1∏
j=1

(1− αj), (1)

where αp represents the z-depth ordered effective opacities,
i.e., products of the 2D Gaussian weights derived from Σp

and their overall opacities σp; dp stands for the view direc-
tion from the camera to xp; SH(·) is the spherical harmon-
ics function. Since vanilla 3D-GS relies on time-consuming
per-scene offline optimization, we employ generalizable
3D-GS to learn feed-forward mappings from images to 3D
Gaussians to accelerate the process. Specifically, we obtain
the 3D Gaussian world state G using Splatt3R [66], which
first employs the stereo reconstruction model Mast3R [36]
to generate 3D point maps from input images and then pre-
dicts the parameters of each 3D Gaussian given these point
maps using an additional prediction head.

3D Gaussian VAE Since the number of learned 3D Gaus-
sians for each world state can vary significantly across dif-
ferent scenes and tasks, we adopt a 3D Gaussian VAE
(Eθ, Dθ) to encode the reconstructed 3D Gaussians G into
a fixed length of N latent embeddings x ∈ RN×D. Specifi-
cally, we first downsample the reconstructed 3D Gaussians
G to a fixed number of N Gaussians GN using Farthest
Point Sampling (FPS): GN = FPS(G). Next, we use these
sampled Gaussians GN as queries to attend and aggregate
information from all Gaussians G to latent embedding x
using a L layer cross-attention-based encoder Eθ like [89]:

X = Eθ(GN ,G) = E
(L)
θ ◦ · · · ◦ E(1)

θ (GN ,G),

E
(l)
θ (Q,G) = LayerNorm(CrossAttn(Q,PosEmbed(G))).

(2)
With latent encoding x, we employ a mirrored transformer-
based decoder Dθ to propagate and aggregate information
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Figure 2. The overall pipeline of GWM, which primarily consists of a 3D variational encoder and a latent diffusion transformer. The
3D variational encoder embeds the Gaussian Splats estimated by a foundational reconstruction model to a compact latent space, and the
diffusion transformer operates on the latent patches to interactively imagine the future Gaussian Splats conditioned on the robot action and
denoising time step.

within the latent code set and leverage to obtain the recon-
structed Gaussians Ĝ:

Ĝ = Dθ(x) = LayerNorm(SelfAttn(x,x)) (3)

For learning the 3D Gaussian VAE (Eθ, Dθ), we use
the Chamfer loss between the centers of our reconstructed
Gaussians Ĝ and the original ones G for supervision. We
also add a rendering loss of our reconstructed Gaussians Ĝ
to achieve high-fidelity rendering for image-based policy:

LVAE = Chamfer(Ĝ,G) + ∥C(Ĝ)−C(G)∥1 (4)

3.2. Diffusion-based Dynamics Modeling
With the encoded world state embeddings xt at time t and
its future state xt+1, we aim to learn the world dynam-
ics p(xt+1|x≤t, a≤t), where x≤t and a≤t denote history
states and actions, respectively. Specifically, we leverage a
diffusion-based dynamics model where we convert dynam-
ics learning into a conditional generation problem, gener-
ating future state xt+1 from noise with history states and
actions yt = (x≤t, a≤t) as conditions.

Diffusion Formulation To generate the future state, we
begin with the formulation of the diffusion process. Specif-
ically, we first add noise to the ground truth future state
x0
t+1 = xt+1 to obtain noised future state samples xτ

t+1

via a Gaussian perturbation kernel:

p0→τ (xτ
t+1|x0

t+1) = N (xτ
t+1;x

0
t+1, σ

2(τ)I), (5)

where τ is the noise step index and σ(τ) is the noise sched-
ule. This diffusion process can be described as the solution
to a stochastic differential equation (SDE) [68]:

dx = f(x, τ)dτ + g(τ)dw, (6)

where w represents the standard Wiener process, f is the
drift coefficient, and g is the diffusion coefficient. Un-
der this formulation, the effect of the Gaussian perturba-
tion kernel is equivalent to setting f(x, τ) = 0 and g(τ) =

√
2σ̇(τ)σ(τ). To generate samples from noises, we can re-

verse Eq. (6) using the reverse-time SDE [2] for sampling:

dx = [f(x, τ)− g(τ)2∇x log p
τ (x)]dτ + g(τ)dw̄, (7)

where w̄ denotes the reverse-time Wiener process and
∇x log p

τ (x) is the score function, i.e., the gradient of log-
marginal probability with respect to x [29]. As the score
function could be estimated by a network, we learn the con-
ditional denoising model Dθ by minimizing the difference
between the sampled future state x̂0

t+1 = Dθ(x
τ
t+1,yt) and

the ground truth future state x0
t+1:

L(θ) = E
[∥∥Dθ(x

τ
t+1, y

τ
t )− x0

t+1

∥∥2
2

]
. (8)

Learning with EDM As pointed out in [32], directly
learning the denoiserDθ(x

τ
t+1,yt) can be affected by prob-

lems like varying noise magnituides. Therefore, we follow
[1] and adopt the practice in EDM [32] to learn a network
Fθ with preconditioning instead. Specifically, we parame-
terize the denoiser Dθ(x

τ
t+1,y

τ
t+1) with:

Dθ(x
τ
t+1,y

τ
t ) = cτskip xτ

t+1 + cτout Fθ

(
cτin xτ

t+1,y
τ
t ; c

τ
noise

)
, (9)

where the preconditioner cτin and cτout scale the input and out-
put magnitudes, cτskip modulates the skip connection, and
cτnoise maps noise levels as an additional conditioning input
into Fθ. We provide details for these preconditioners in ??.
With this conversion, we can rewrite the objective in Eq. (8)
with:

L(θ) = E

[∥∥∥∥Fθ (c
τ
inx

τ
t+1, y

τ
t )−

1

cτout

(
x0
t+1 − cτskipx

τ
t+1

)∥∥∥∥2

2

]
.

(10)
A crucial insight of this conversion is creating a new train-
ing target for better learning the network Fθ by adaptively
mixing signal and noise depending on the noise schedule
σ(τ). Intuitively, at high noise levels (σ(τ) ≫ σdata),



Algorithm 1: Monotonic Model-Based Policy Op-
timization (MBPO) with Gaussian World Model

Initialize policy π(at|st), Gaussian world model
pθ(st+1, rt|st,at), empty replay buffer B;

for N epochs do
Collect data with π in real environment:
B = B ∪ {(st,at, st+1, rt)}t;

Train Gaussian world model pθ on dataset B via
maximum likelihood:
θ ← argmaxθ EB[log pθ(st+1, rt|st,at)];

Optimize policy under predictive model:
π ← argmaxπ Eπ[

∑
t≥0 γ

trt];
end

cτskip → 0 and the network primarily learns to predict the
clean signal. Conversely, at low noise levels (σ(τ) → 0),
cτskip → 1, the target becomes the noise component, prevent-
ing the objective from becoming trivial.

Implementation Technically, we implement the network
Fθ with a DiT [56]. Given a sequence of actual world
state latent embeddings {x0

t = xt}Tt=1, we first create la-
tents with noise {xτ

t }Tt=1 following the Gaussian perturba-
tion described in Eq. (5). Next, we concat the noise latent
embeddings with rotary position embedding (RoPE [69])
and pass it to the DiT as inputs. In terms of conditions
yt = (x0

≤t, a≤t, c
τ
noise), the time embeddings are modulated

by adaptive layer normalization (AdaLN [57]), and the cur-
rent robot actions are used as the keys and values for the
cross-attention layers within the DiT for conditional gener-
ation. For stability and efficiency across all attention mech-
anisms, we employ Root Mean Square Normalization (RM-
SNorm [88]) with learnable scales to stabilize training that
processes spatial representations while incorporating tem-
poral action sequences as conditions.

3.3. GWM for Policy Learning
GWM for Reinforcement Learning We demonstrate
that GWM can be seamlessly integrated into existing
model-based RL methods. Formally, a Markov Decision
Process (MDP) is defined by the tuple (S,A, p, r, γ, ρ0).
S and A are the state and action spaces, γ is the dis-
count factor, and r(s,a) is the reward function. The goal
of model-based RL [30] is to learn a policy π that max-
imizes the expected sum of discounted rewards π∗ =
argmaxπ Eπ [

∑∞
t=0 γ

trt] while constructing a model of
the dynamics pθ(st+1, rt|st,at) using the policy roll-outs.
We provide the pseudo-code for the model-based RL policy
learning in Algorithm 1. Under this formulation, we add
an additional reward prediction head over GWM to param-
eterize the dynamics model pθ(st+1, rt|st,at). To improve
performance in visual manipulation tasks, we build our base

RL policy following design choices discussed in [78].

GWM for Imitation Learning In imitation learning, we
use GWM as a more effective encoder to provide better fea-
tures for policy learning. Specifically, we use the feature
vector after the first denoising step in the diffusion pro-
cess as the input for downstream policy models like BC-
transformer [55] and diffusion policy [8]. The first denois-
ing step carries out the representative spatial information to
deal with the severe noise level. In our implementations, we
predict actions in sequential chunks to promote consistency
in robotic control.

4. Experiments
In our experiments, we focus on the following questions:
1. How is the quality of the action-conditioned video pre-

diction results across different domains?
2. Does Gaussian world model benefits downstream imita-

tion and reinforcement learning? Does it show greater
robustness compared with image-based world model?

3. How does the Gaussian world model help typical poli-
cies (e.g., diffusion policy [8]) in real-world robotic ma-
nipulation tasks?

In the following sections, we describe in detail the model
performance regarding these key topics. Specifically, we
leverage the following three testing environments and four
tasks in our experiments:

Environments To provide a comprehensive analysis of
GWM’s capability, we evaluate our method on two
synthetic and one real-world environment: (1) META-
WORLD [86], a synthetic environment for learning RL poli-
cies for robotic manipulation; (2) ROBOCASA [55], a large-
scale multi-scale synthetic imitation learning benchmark
featuring diverse robotic manipulation tasks in the kitchen
environment; and (3) FRANKA-PNP, a real-world pick-and-
place environment using a Franka Emika FR3 robot arm.

Tasks We meticulously design four tasks to evaluate
GWM across various testing environments systematically:
(1) Action-conditioned scene prediction assesses GWM’s
effectiveness in world modeling and future prediction; (2)
GWM-based imitation learning examines the representation
quality and its benefits for imitation-learning-based robotic
manipulation; (3) GWM-based RL explores its potential
for model-based reinforcement learning; and (4) real-world
task deployment evaluates GWM’s robustness in real-world
robot manipulation.

4.1. Action-conditioned Scene Prediction
Experiment Setup The capability of a world model to
generate high-fidelity and action-aligned rollouts is critical
for effective policy optimization. To evaluate this capabil-
ity, we train GWM on human demonstrations available on
all considered real and synthetic environments, and evaluate



Table 1. Quantitative results for future state prediction on
Meta-World and FRANKA PNP. LPIPS and SSIM scores are
scaled by 100. Best results are highlighted in bold.

Dataset Method FVD↓ PSNR↑ SSIM↑ LPIPS↓

META-WORLD
iVideoGPT 75.0 20.4 82.3 9.5
GWM 73.0 20.6 82.8 9.0

FRANKA-PNP iVideoGPT 63.2 27.8 90.6 4.9
GWM 61.5 28.0 91.0 4.5

Ground
truth

t=0 t=2 t=4 t=6t=5t=3t=1 t=7

(context)

Action-cond.
Prediction

Difference

t=0 t=2 t=4 t=6t=5t=3t=1 t=7

(context)

Ground
truth

(context)

Action-cond.
Prediction

Difference

Ground
truth

GMW 
(Ours)

iVideoGPT

Figure 3. Qualitative comparison between models on META-
WORLD. GWM successfully predicts better details on the gripper
movement (highlighted in blue).

the future prediction quality by conditioning the model on
unseen action trajectories sampled from the validation set.
For quantitative evaluation, we employ common metrics for
generation quality, including FVD [72] to measure temporal
consistency, image-based metrics including PSNR [28] for
pixel-level accuracy, alongside SSIM [77] and LPIPS [91]
for perceptual quality.

Results and Analyses We provide quantitative compar-
ison between our method and iVideoGPT in Tab. 1. As
shown in Tab. 1, our method consistently outperforms
the current state-of-the-art image-based world modeling
method iVideoGPT on both synthetic and real-world envi-
ronments, demonstrating the effectiveness of our diffusion-
based Gaussian world model learning pipeline. Notably, as
shown in Fig. 3, image-based models like iVideoGPT are
prone to failures in capturing dynamics details (e.g., the
gripper). Though these details might not cause large dif-
ferences in visual metrics, they will significantly affect pol-
icy learning as we later discuss in Sec. 4.3. We provide
more qualitative visualizations of GWM’s prediction result
on ROBOCASA and FRANKA-PNP in Fig. 4.

4.2. GWM-based Imitation Learning
Experiment Setup As discussed in Sec. 3.3, GWM can
be used to extract informative representation from image
observation, which is expected to benefit imitation learning.
We verify this property by testing GWM’s effectiveness for
imitation learning on ROBOCASA. The task suite in ROBO-
CASA comprises 24 atomic tasks with related language in-
structions for kitchen environments, including actions such
as pick-and-place, open, and close. Each task is provided
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t=8

t=5t=3t=1 t=7

t=9

(context)

Action-cond.
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Difference
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Ground
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(context)

Action-cond.
Prediction

Difference

Figure 4. Qualitative visualization on future state prediction of
GWM on FRANKA-PNP and ROBOCASA. All predictions are
rolled out by applying the unseen action trajectory from the valid
dataset. Zoom in for details.

with a limited set of 50 human demonstrations and a set of
3000 generated demonstrations from MimicGen [51]. We
train our GWM on these demonstrations and pass it as the
state encoding for the state-of-the-art BC-transformer [55]
for quantitative comparison on the success rate metrics.

Results and Analyses Our experimental results on the
ROBOCASA benchmark are presented in Table 2, which
demonstrate the effectiveness of our method in multi-task
imitation learning scenarios. Across 24 kitchen manip-
ulation tasks, our approach consistently outperforms the
BC-Transformer baseline. With limited human demonstra-
tions (H-50), our method shows an average improvement of
10.5% in success rates. When trained on generated demon-
strations (G-3000), our method maintains scalable perfor-
mance with an average gain of 7.6%. Notably, our ap-
proach exhibits particular strengths in complex manipula-
tion tasks such as pick-and-place operations and interactive
tasks like turning on/off appliances, where the performance
gains are most significant. These results confirm that our
method’s ability to extract informative representations from
visual observations effectively enhances imitation learning
capabilities in practical robotic manipulation scenarios.

4.3. GWM-based Reinforcement Learning
Experiment Setup We evaluate GWM’s capabilities for
RL policies on six Meta-World [86] robotic manipulation
tasks with increasing complexity. We implement a model-
based RL approach inspired by MBPO [30], using GWM to
generate synthetic rollouts that augment the replay buffer of
a DrQ-v2 [84] actor-critic algorithm. We include the state-
of-the-art image-based world model iVideoGPT [78] as a
strong baseline. For fair comparisons, we do not utilize pre-



Table 2. Multi-Task Imitation Learning Results in Robocasa. Average success rates (%) of multi-task agents trained with 50 human
demonstrations or 3000 generated demonstrations per task. Results are evaluated over 50 episodes with different floor plans and styles.

PnP
CabToCounter

PnP
CounterToCab

PnP
CounterToMicrowave

PnP
CounterToSink

PnP
CounterToStove

PnP
MicrowaveToCounter

Method H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000

BC-transformer 2 18 6 28 2 18 2 44 2 6 2 8
GWM 18 32 4 22 14 44 20 38 2 18 20 26
∆ +16 +14 -2 -6 +12 +26 +18 -6 0 +12 +18 +18

PnP
SinkToCounter

PnP
StoveToCounter

Open
SingleDoor

Open
DoubleDoor

Close
DoubleDoor

Close
SingleDoor

H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000 H-50 G-3000

BC-transformer 8 42 6 28 46 50 28 48 28 46 56 94
GWM 22 38 18 44 58 62 28 42 50 58 54 90
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Figure 5. Model-based RL Results of GWM and ivideogpt [78] on METAWORLD. The shadow area represents 95% confidence interval
(CI) across three random seeds. Each data point is evaluated over 20 episodes.

trained initialization of both methods. For fair comparisons,
all compared methods use the same context length, horizon,
and are trained to a maximum of 1× 105 steps.

Results and Analyses Figure 5 demonstrates that GWM
consistently outperforms iVideoGPT across all six Meta-
World tasks. On average, GWM converges approximately 2

faster than iVideoGPT and reaches higher asymptotic per-
formance on complex manipulation tasks. The superior per-
formance stems from GWM’s 3D Gaussian representation,
which allows more accurate prediction of contact dynam-
ics and object movement under manipulation, compared to
purely image-based approaches. The results confirm that
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Figure 6. Real-World Experiment Setup. Left: using a Franka
Emika Panda robotic arm equipped with an RGB camera, we eval-
uate the performance of the diffusion policy [8] both with and
without our proposed method. Right: the robot’s visual inputs
in the task completion.

Table 3. Real-world Experiment Results. We report the number
of successful trials out of all 20 trials in FRANKA PNP.

FRANKA-PNP Diffusion Policy GWM (Ours)

Cup distractor 6/10 7/10
Plate distractor 1/5 3/5
Table distractor 0/5 3/5

Total 7/20 13/20

explicit 3D representation offers substantial advantages for
robotic control tasks requiring precise spatial reasoning.

4.4. Real-world Deployment
Experiment Setup We deploy a Franka Emika FR3 robotic
arm and a Panda gripper for our real-robot experiments. We
focus on the real-world task of picking a colored cup, and
placing it onto a plate on the table. We collect a small set
of 30 demonstrations using the Mujoco AR teleoperation
interfaces. We also setup one third-view Realsense D435i
camera to provide unposed RGB-only images for observa-
tion. We provide an overview of the real-world task setting
in Fig. 6. Similar to the experiment setting in Sec. 4.2, we
compare the performance of the state-of-the-art RGB-based
policy Diffusion Policy [8] with or without our GWM rep-
resentation on task success rate for quantitative analysis.
Results and Analysis As shown in Table 3, GWM out-
performs Diffusion Policy (65% vs. 35% success rate) on
20 trials with different initial start positions and object lo-
cations (i.e. distractors). The performance gap widens for
novel distractors, demonstrating GWM’s superior general-
ization capabilities. Our approach maintains consistent per-
formance across task variations due to its effective world
model that captures task-relevant dynamics while being ro-
bust to visual differences. The real-world rollouts are shown

Table 4. Ablation Study on PnP CabToCounter in ROBO-
CASA task suite. We report the reconstruction metrics and the suc-
cess rates (SR) of imitation learning on the Human-50 dataset.

GS 3D VAE FVD↓ PSNR↑ SSIM↑ LPIPS↓ SR ↑

✗ ✗ 67.8 27.2 88.2 5.1 4
✓ ✗ 65.3 26.9 89.5 4.9 18
✓ ✓ 62.4 28.1 90.8 4.6 24

in the supplementary file, where the advantage stems pri-
marily from more precise object localization and accurate
placement operations. The results demonstrate GWM’s ro-
bust spatial-temporal understanding in real-world robotic
manipulation tasks.

4.5. Ablation Analysis

We conduct additional experiments on ROBOCASA to fur-
ther verify our design choices.
Choice of Gaussian Splatting As shown in Table 4, com-
pared to directly building image-based world model with
diffusion transformer on par with [1], introducing Gaussian
Splatting significantly improves the success rate (SR) from
4% to 18%. While PSNR shows a slight decrease, both
SSIM and LPIPS metrics improve, suggesting that Gaus-
sian Splatting provides better 3D consistency across differ-
ent time steps. This validates our hypothesis that explicit
3D representation enhances spatial understanding for robot
learning compared to pure 2D approaches.
Choice of 3D Gaussian VAE Further incorporating the 3D
VAE component yields consistent improvements across all
metrics, including PSNR. The success rate further improves
from 18% to 24%. The results confirm that our 3D Gaussian
VAE efficiently captures the latent structure of the scene,
enabling more compact scene representation while main-
taining spatial understanding.

5. Conclusion

In this paper, we introduce a novel Gaussian World Model
(GWM) for robotic manipulation that addresses limitations
of image-based world models by incorporating robust geo-
metric information. Our approach reconstructs future states
by modeling the propagation of Gaussian primitives under
robot actions. The method combines a DiT with a 3D-
aware variational autoencoder for precise scene-level future
state reconstruction via Gaussian Splatting. We develop a
scalable data processing pipeline to facilitate test-time up-
dates within a model-based reinforcement learning frame-
work, extracting aligned Gaussian splats from unposed im-
ages. Experiments in both simulated and real-world settings
demonstrate the effectiveness of GWM in predicting future
scenes and training superior policies.
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