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Abstract— Grasping in dense clutter is a fundamental skill
for autonomous robots. However, the crowdedness and oc-
clusions in the cluttered scenario cause significant difficul-
ties to generate valid grasp poses without collisions, which
results in low efficiency and high failure rates. To address
these, we present a generic framework called GE-Grasp for
robotic motion planning in dense clutter, where we leverage
diverse action primitives for occluded object removal and
present the generator-evaluator architecture to avoid spatial
collisions. Therefore, our GE-Grasp is capable of grasping
objects in dense clutter efficiently with promising success rates.
Specifically, we define three action primitives: target-oriented
grasping for target capturing, pushing, and nontarget-oriented
grasping to reduce the crowdedness and occlusions. The gen-
erators effectively provide various action candidates referring
to the spatial information. Meanwhile, the evaluators assess
the selected action primitive candidates, where the optimal
action is implemented by the robot. Extensive experiments in
simulated and real-world environments show that our approach
outperforms the state-of-the-art methods of grasping in clutter
with respect to motion efficiency and success rates. Moreover,
we achieve comparable performance in the real world as that
in the simulation environment, which indicates the strong gen-
eralization ability of our GE-Grasp. Supplementary material is
available at: https://github.com/CaptainWuDaoKou/GE-Grasp.

I. INTRODUCTION

Grasping in unstructured environments is a fundamental
skill for general purpose robots with numerous applications
in manufacturing, logistics, food production, etc.[4], [18].
Although robotic grasping for singulated objects has been
widely studied and shown impressive progress [20], [14], it
is not a common scenario for the target to be completely
isolated in realistic applications. Due to the significantly
increased uncertainty, effectively grasping objects in clutter is
highly desirable while still remaining challenging in robotics.

To address this issue, several methods have been proposed
for grasping in dense clutter. Adithyavairavan et al.[21] and
Agboh et al.[1] attempt to plan collision-free grasps to pick
up the target directly, while Zhang et al.[27] propose to grasp
the objects in the clutter one by one in a planned order.
Danielczuk et al.[7], [6] further investigate approaches for
searching and isolating the target object with non-prehensile
manipulations like pushing. Recently, the impressive work
of Zeng et al.[26] taking advantage of the synergy between
pushing and grasping demonstrates that flexibly switching
between action primitives with different functions could be
a promising solution. Although significant improvement has
been made in this area, target-oriented grasping in dense
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(a) Problem configuration.

(b) Our approach.

Fig. 1: Problem configuration. The target is a red cylinder,
which is occluded by a block on the top and closely
surrounded by other blocks. The problem is solved via a
sequence of manipulations by our GE-Grasp: 1) a nontarget-
oriented grasping to remove the block occluding the target;
2) a pushing breaking the clutter to free the target from the
clutter; 3) a target-oriented grasping to pick up the target.

clutter (see Fig. 1a) still faces the following challenges. First,
the severe occlusion among objects makes it difficult to un-
derstand the clutter scenario for valid grasp pose generation.
Second, the crowdedness in dense clutter prevents planning
the collision-free grasps due to the lack of space.

In this paper, we present the GE-Grasp method to gen-
erate robotic manipulations for target grasping in dense
clutter. Unlike conventional methods, which make direct
regressions on the perception data of a single or multiple
objects and output possible grasp poses only, our method
designs diverse action primitives flexibly removing occluded
objects and present the generator-evaluator architecture for
grasp pose generation to efficiently avoid spatial collisions
(see Fig. 1b). More specifically, we defined three action
primitives including target-oriented grasping for picking up
the target directly, pushing to make space for the gripper, and
nontarget-oriented grasping to remove the occluded objects
around the target. We build the generators to efficiently
generate candidates for the operation position of primitive
actions by leveraging the spatial correlation test (SCT),
which is a series of rules for spatial height detection and
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searches in the workspace for positions where collision-free
force closures could be formed. The evaluators assess a
motion candidate by predicting the benefit acquired for target
grasping after it is executed in the current scene, where the
optimal action is selected by a conditional-greedy policy for
robot implementation. Extensive experiments show our GE-
Grasp outperforms the state-of-the-art methods of grasping
in clutter with respect to motion efficiency and success rates
in both simulated and real-world environments. Moreover,
our approach achieves comparable performance in the real
world as that in the simulated environment, which indicates
the strong generalization ability of GE-Grasp.

II. RELATED WORK

Grasping: Classical solutions for robotic grasping aim
to find stable force closures by explicitly modeling the
physical dynamics of both the objects and the gripper [24],
[12]. However, these approaches heavily rely on strong
assumptions that usually do not hold in practice and the prior
knowledge of objects that is hard to acquire in real-world
settings. In recent years, considerable advancements have
been witnessed in data-driven methods due to the application
of deep learning techniques for robotic vision [14], [23],
which enable robots to learn successful grasps with enhanced
capabilities compared to hand-crafted methods. Since the
real-world scenarios usually contain multiple objects with
complex interactions, the data-driven methods that focus on
dealing with isolated objects [16], [20] acquire significantly
decreased performance in practice. To address this, some
researchers decompose the problem of grasping in dense
clutter into sequentially capturing isolated objects. Zhang
et al.[27] propose the grasp-only strategy that consists of
simultaneous robotic grasping detection and manipulation
relationship reasoning, where the target is finally captured by
removing covered objects in the learned order. However, the
grasping-only strategy fails to handle adversarial cases ap-
pearing in practice with high frequencies, where valid grasps
may not exist due to the object occlusion and crowdedness.

Pushing: The study of pushing can be traced back to the
early days of robotic manipulation for tasks like driving an
object to a specific pose and position [10], [17]. A large
amount of these methods for robotic pushing are model-
based and require prior knowledge of physical properties
(e.g., shapes, weights, friction, etc.) [19], [3]. Recent works
have explored end-to-end learning approaches to map visual
observations into pushing planning and achieved promising
results [28], [5], [2]. Eitel et al.[8] select favorable push
actions in clutter to separate the target from unknown objects,
and Zhou et al.[28] aim to learn the force-motion dynamics
with a polynomial model. However, these methods mainly
focus on planning stable pushing policies without collabo-
rating with other actions and limit the practicality of robotic
manipulation that requires complicated interactions.

Pushing with grasping: Effective non-prehensile ma-
nipulations like pushing can singulate the target object by
breaking the structure of the clutter, where enough space is

prepared for the gripper. Ignasi et al.[5] explore the model-
free planning that drives the target object to the position
suitable for pre-designed grasping algorithms. To jointly
select the optimal grasping poses and pushing positions,
Zeng et al.[26] present a simultaneous learning method for
complementary pushing and grasping policies from scratch
through self-supervised trials and errors. Yang et al.[25]
further introduce a segmentation module to flexibly denote
the target, where the decision of pushing and grasping is
determined by predicted values based on domain knowledge.
However, these methods still face the challenges of occlu-
sion and crowdedness due to the limited action primitives
and lack of collision-free planning. We follow the task
settings illustrated in [25] but propose a completely different
architecture. Our approach applies collaborative pushing and
grasping actions in a data-driven manner without require-
ments of prior knowledge or precise physical assumptions.

III. APPROACH

We first introduce the overall pipeline of our GE-
Grasp. Then we detail the diverse action primitives and the
generator-evaluator architecture. Finally, the procedures of
training and testing including dataset collection, learning
objective and beneficial techniques are demonstrated.

A. Overall Pipeline

Grasping objects in dense clutter is highly desirable in
realistic applications, while still remaining challenging due
to the uncertainty in the complex environment. Given the
clutter composed of multiple objects with the target inside, a
robot aims to pick up the target object which is placed in an
arbitrary pose with at least part of it visible. The obstacle ob-
jects can be either graspable or ungraspable, and the number
of manipulations is also expected to be minimized with high
efficiency. However, significant crowdedness and occlusion
in the cluttered scenario cause difficulties to generate valid
grasp poses without collisions.

To address this issue, we present the GE-Grasp method
that generates collision-free grasp poses via sequential push-
ing and grasping in a collaborative way, where Fig. 2 illus-
trates the pipeline of the presented GE-Grasp. First, RGB-D
images in the top-down view are collected to observe the
workspace to perceive color and depth information. The RGB
images are fed forward to the pre-trained semantic segmen-
tation module to identify the target location via the predicted
masks, and the depth heightmaps are leveraged to efficiently
produce candidates of pushing and grasping by the generators
with SCT. Finally, the evaluators assess all candidates by
predicting their benefits on target grasping in the current
scene, where we utilize a conditional greedy policy to select
the optimal action candidate for robot implementation. As a
result, our GE-Grasp reduces the crowdedness and occlusion
in clutter by pushing and removing occluded objects for
ungraspable targets, which generates valid grasp poses in
complex cases for picking up the target objects.



Fig. 2: Overview. Our robot manipulates on a tabletop observed by an RGB-D camera from a fixed position and angle. The
segmentation module takes in the RGB image and outputs a mask indicating the target object. Multiple motion candidates
including pushing, nontarget-oriented grasping and target-oriented grasping are provided by the generators based on the depth
heightmap, which are fed into the evaluators together with the target mask and depth heightmap for quality assessment. The
optimal action for execution is chosen from the best push and best grasp through a conditional greedy policy.

B. Primitive Actions

Conventional methods utilize five-dimensional bounding
box [13], [15], [9] to represent robotic grasps. This approach
describes a grasp by a rectangle with a specified position,
size, and orientation, which is implemented by a parallel
plate gripper. However, the conventional representations fail
to acquire promising performance due to the neglect of
rich visual information. Inspired by [20], we represent the
robot actions by masks with the guidance of visual cues.
To generate valid grasp poses in adversarial cases, we
define diverse action primitives including pushing, nontarget-
oriented grasping, and target-oriented grasping.

Pushing: Effective pushing contributes to breaking struc-
tured clutter and separating the target object from others.
The primitive action of pushing is that the closed gripper
moves along a straight line parallel to the tabletop in order
to push objects with fingertips. Pushing can be represented
by a rectangular mask revealing the starting position and the
orientation. As shown in Fig. 3b, in the rectangular mask,
pixels in the first and the second halves of the pushing
route are assigned with 0.5 and 1.0 respectively. Therefore,
the mask representing pushing indicates the area swept by
the gripper in the workspace with the starting point and
orientation.

Nontarget-oriented grasping: Although pushing breaks
the clutter structure to make space for the gripper, accurately
predicting the consequent changes in dense clutter is difficult.
To eliminate the occlusion in a more fine-grained way,
we present nontarget-oriented grasping that deterministically
removes the obstacles covering or surrounding the target. As
shown in Fig. 4b, nontarget-oriented grasping is represented
as a rectangular all-ones mask, which demonstrates the

position and orientation of the fully opened gripper.
Target-oriented grasping: Target-oriented grasping is

described in the same way as nontarget-oriented grasping
but aims to pick up the target object directly. Currently,
target-oriented grasping is executed as the last step after the
obstacles are cleared by the other two action primitives.

C. Generators

The generators are designed to produce valid motion
candidates via heuristic methods. Since we assume that
actions close to the objects exert great influence, the actions
are generated within the region of interest, which is a small
square area centered on the target. We regard every pixel in
the region of interest as a source pixel from which action
with random orientation is generated. Although the number
of the generated actions is large, the push generator and the
grasp generator are designed to efficiently select collision-
free motion candidates for the evaluators by SCT.

Push generator: The source pixel denotes the starting
position of pushing in one of three available directions
including facing the target and deflecting 22.5° to the left and
right, which is performed with the fingertips of the closed
gripper. Enough space should be prepared at the starting
position for the closed gripper in order to avoid unwanted
collisions. Therefore, the SCT for the action primitive of
pushing is that the value of the source pixel in the heightmap
should be smaller than the pixel covered by the target (see
Fig. 3a), which indicates that the gripper can be placed
vertically to the starting position without any collisions.

However, since we traverse the candidates formed from
every pixel in the region of interest, actions generated from
adjacent pixels may fall into similar behaviors and lead to



(a) Height detection. (b) Push mask. (c) Invalid push.

Fig. 3: Generating push candidates. (a) demonstrates the
SCT for push candidates, where height of the four red points
should be lower than the target. (b) illustrates the candidate
represented by a push mask. (c) shows an example of the
invalid push that leads to unwanted collisions.

the same result. The massive redundancy in the candidates
reminds us that the number of candidates can be reduced by
sampling, so as to reduce computational costs. Considering
that the generation of motion candidates is highly related
to the altitudes in the scenario, the imbalanced distribution
of objects in the scenario may result in an imbalanced dis-
tribution of pushing candidates, which extremely limits the
expressiveness of pushing. We divide the workspace into four
quadrants with the target center as the origin and randomly
sample a maximum of 25 candidates in each quadrant, a
maximum of 100 candidates in total, which achieves a good
balance between including the optimal action and reducing
the amount of computation. Through this method, candidates
in any direction of the target can be obtained.

Grasp generator: In the grasp generator, the source pixel
stands for the middle position of the parallel jaw grasp in
the top-down view. Moreover, 16 types of orientations can
be selected for grasp candidates generated at source pixels,
where the difference between adjacent orientations is 22.5◦.
The grasp generator is designed to find potential collision-
free force closure solutions in the workspace without an-
alytical modeling of the objects and the robot. Since we
employ the parallel jaw as the gripper, a top-down grasp can
be completed when a sizable height difference between the
finger and the gripper center exists. Therefore, the SCT for
action primitives of nontarget-oriented grasping and target-
oriented grasping is that the value of the source pixel in the
heightmap is required to be larger than the pixel covered
by fingers (see Fig. 4a). The accurate height difference
required is calculated with reference to the trajectory of the
fingertips when the gripper is closing. The SCT enables a
potential force closure while avoiding unwanted collisions
during gripper closing. In order to enhance the efficiency of
grasp generation and the expressiveness of action candidates,
the same sampling method is applied as in the push generator.

D. Evaluators

The candidates include most effective action primitives
that benefit capturing the target, but there are still a few
empty grasps with failure trails, as shown in Fig. 4c. Hence,
an evaluator is expected to distinguish the successful and
failed candidates. The evaluators assess the motion candi-

(a) Height detection. (b) Grasp mask. (c) Empty grasp.

Fig. 4: Generating grasp candidates. (a) depicts the SCT
for grasp candidates, where the two blue points should be
higher than the red points. (b) shows the candidate repre-
sented by a grasp mask. (c) shows an example of the empty
grasp that passes the SCT but leads to grasping failures.

dates by predicting the benefits of the actions for target grasp-
ing and choose the optimal one. We build a push evaluator
and a grasp evaluator respectively, which are both modeled
by DenseNet-121 [11]. The input for each evaluator consists
of the current heightmap, target mask, and a push/grasp
mask that represents the motion candidate, and the evaluators
output the predicted value of the input action candidates.

The action candidates with high scores are regarded to be
beneficial, and only actions whose score is higher than the
pre-defined threshold are considered to be effective. Grasping
is preferred to pushing in our GE-Grasp since grasping
brings more deterministic consequences other than uncer-
tainty. Therefore, we propose a conditional greedy policy
for implemented action selection. The best grasp candidate
is selected if the score surpasses the threshold, indicating the
effectiveness of the preferred grasp actions. Otherwise, the
candidate with the highest score is chosen to be executed.

E. Training and Testing

In this section, we introduce the details of dataset col-
lection, the learning objective for model training, and the
beneficial techniques during testing. Training data for the
evaluators are collected in the simulation environment of V-
REP (a popular robot simulation platform), where the robot
randomly performs actions provided by the generators.

An action can be considered to have reached the ultimate
goal, effective or meaningless, based on its contribution to
capturing the target object, and is therefore assigned a value
of 2, 1, or 0. Action with a higher value is always preferred
to be performed. We regard the action of pushing as effective
if the occlusion over the target decreases or the space around
the target increases by a certain threshold. To quantitatively
represent the occlusion and crowdedness, domain knowledge
of the workspace is introduced [25]. We compare the target
masks predicted by the segmentation module before and after
the action, which are denoted as mt and mt ′ respectively. If
the number of pixels covered by the target in mt ′ is 20%
more than that in mt , we regard the occlusion to decrease
significantly. For crowdedness, we construct the mask of
target border mb by expanding the target mask, and the target
border occupancy value ob is defined as the number of pixels
with height above the ground, which indicates the amount



value = 1 value = 1 value = 2

Fig. 5: Ground-truth value assigning. Ground-truth values
of actions are assigned differently according to the conse-
quences after execution. Actions that reduce crowdedness
and occlusions in the clutter are regarded as effective and
assigned with 1, while target-oriented grasping that success-
fully picks up the target is assigned with 2.

of space around the target object occupied by obstacles.
The decrease in ob after performing an action shows an
increase in free space around the target, i.e., a decrease
in crowdedness. Finally, as shown in Fig. 5, samples with
effective pushes are assigned with 1 and otherwise 0.

Effective grasps can either capture the target directly or
remove objects occluding the target. We assign the value
as 2 for the grasp that successfully picked up the target,
and the value is assigned with 1 for that attempting towards
nontarget objects and proven to be effective (see Fig. 5).
Samples that result in grasp failures or provide no benefits
for target grasping in the current scenario are assigned by
0. We use the same evaluation criteria as that in the value
assignment of the push to determine whether a grasp towards
nontarget objects is effective or not.

We collected a dataset for pushing and a dataset for
grasping separately by randomly executing actions provided
by the two generators in V-REP, and the two datasets are of
the same size with 4400 samples. Each sample consists of a
heightmap of the current scene, a target mask provided by
the segmentation module, and a mask of the action primitive
being performed. The samples are labeled by evaluating the
benefits to the goal of target grasping in dense clutter. The
evaluators are optimized offline with batch mode training uti-
lizing the collected dataset by minimizing the error between
predicted score and ground-truth values via L1 loss.

As no physical boundaries encompass the workspace,
objects may lie on the edge with incomplete perceptions. To
enable the target on edge to be graspable, a deterministic
pushing will be performed, where the target is pushed
back to the workspace for complete information acquisition.
Meanwhile, we force the robot to execute pushing if it fails
to grasp twice consecutively to avoid trivial solutions.

IV. EXPERIMENTS

We conduct extensive experiments in both simulated and
real-world environments to evaluate our GE-Grasp. The
goal of the experiments is to verify that 1) the generators
can provide multiple valid collision-free primitive action
candidates, 2) the evaluators are capable of choosing the
optimal action for target grasping, 3) motion efficiency of
target-oriented grasping in dense clutter is improved sizably

Fig. 6: Test cases in the random clutter task. The easy,
normal, and hard case contains 10, 15, and 20 randomly
generated and placed blocks respectively. We assign one of
the colored blocks as the target in each round.

and 4) our GE-Grasp acquires strong generalization ability to
novel objects in the real world. In simulation experiments, we
followed the same settings as in [25] for a fair comparison.
In real-world experiments, we modify our model to enable
the robot to explore the target in dense clutter, where a
deterministic pushing is added before at the beginning of the
action sequences. Furthermore, we also evaluate our method
with the same task in completely novel objects.

A. Implementation Details

The workspace is a 0.4482m2 area on the tabletop, and
the visual observations are converted into 224×224 pixel
resolution RGB and depth images. In the visual input, each
pixel represents a 2×2 mm2 vertical column in the 3D
space. The region of interest for candidate generation is a
0.22m2 square centered on the target, which contains an area
of 100×100 pixels projected to the heightmap. Pushing is
represented with a mask of 62×12 pixels according to the
gripper size and the motion length, and a grasp mask is set
to 60×12 pixels considering the size of the opened gripper.
The threshold in our conditional greedy policy is set to 1.0
and the height difference threshold of the SCT for push and
grasp generation is 15 mm and 25 mm, respectively.

Our hardware configurations include an Intel i5-8500 CPU
with an NVIDIA GeForce GTX 1080Ti GPU for accelera-
tion. The evaluator networks are trained with a fixed learning
rate of 10−4 and weight decay 2−5 by the SGD optimizer.
We utilize the pretrained Light-Weight RefineNet [22] as the
segmentation module for target annotation.

B. Baseline Methods

The baseline methods also learn collaborative pushing and
grasping to deal with the problem of robotic grasping in
dense clutter, which is introduced in detail as follows.

MASK-VPG [26], [25] is an end-to-end model which
takes in visual observations and outputs pixel-wise Q-maps
for pushing and grasping. Pushing is executed in a small
region around the target while grasping in the area covered
by the target mask. The model is trained with reinforcement
learning algorithms, and the action with the highest Q-value
within the constrained action areas will be executed.

Grasping-Invisible (GI) [25] introduces a segmentation
module to annotate the target object for optimal action selec-
tion of grasping in dense clutter. The critic predicts the Q-
value predictions for pushing and grasping, and a classifier-
based coordinator incorporates the predicted Q-value with



Fig. 7: Performance of grasping in random clutter with
different hardness. The GE-Grasp w/o pus., ntg., gen.,
and eva. stands for the variant of GE-Grasp without the
pushing primitive, nontarget grasping primitive, generators,
and evaluators respectively. Our approach shows a high
effectiveness by achieving a task success rate of 98.8%
(bottom) with 1.38 motions in average (top).

domain knowledge to coordinate pushing and grasping for
the detected target. For scenarios with no detected target, a
Bayesian-based explorer will search for the target.

C. Evaluation Metrics

The experiments are executed for 30 and 10 runs in
simulation and real-world tests respectively. As our goal is
to successfully pick up the target with minimum actions, we
evaluate the average performance with motion efficiency and
success rate with respect to efficiency and effectiveness:

Motion efficiency (ME) is defined as the number of
actions performed before completion divided by the number
of target objects, which represents the average number of
motions executed per target. Success rate (SR) describes
the ratio of successful grasps to the overall trials. A task is
successfully completed if the robot captures the target within
5 motions in simulation or 15 motions in the real world.

D. Simulation Experiments

The simulation environment is set up in V-REP, where
a UR5 robot and an RG2 gripper with Bullet Physics
2.83 are applied for dynamics and V-REP’s internal inverse
kinematics module is leveraged for robot motion planning.
Visual information of the scene is captured from an RGB-
D camera statically mounted 0.5 m above the workspace.
Despite the baseline methods and GE-Grasp, the no-pushing
variant of GE-Grasp which only utilizes the grasping module
(i.e., GE-Grasp w/o pushing) is also evaluated in simulation.

1) Random clutter: For random clutter settings, blocks
with different colors and shapes are randomly dropped on
the workspace. In fact, the target object is difficult to be
completely blocked, so it is at least partially visible. In each
trial, one of the blocks is assigned as the target object while
the others are regarded as obstacles. We set up test cases of
random clutter containing 10, 15, and 20 objects respectively,
which represent the easy, normal, and hard scenarios (See

Method Success Rate (%) Motions

MASK-VPG [25], [26] 70.2 2.59±0.47
GI [25] 86.7 1.97±0.32
GE-Grasp w/o pus. 98.1 1.47±0.15
GE-Grasp w/o ntg. 94.2 1.49±0.18
GE-Grasp w/o gen. 85.0 2.08±0.23
GE-Grasp w/o eva. 81.2 2.14±0.26
GE-Grasp 98.8 1.38±0.12

TABLE I: The success rate and the average number of
motions for grasping in the random clutter.

Fig. 8: Test cases with the challenging clutter. We set
up 8 challenging test cases where objects are adversarially
arranged and directly grasping the target is impossible.

Fig. 6). We performed 30 runs on each case, where the results
are shown in Fig. 7 and Table I. Our GE-Grasp outperforms
all the other compared strategies remarkably in both success
rate and motion efficiency. Overall, our approach achieves
a 98.8% task success rate with 1.38 motions to pick up
a target on average. Meanwhile, the no-pushing variant
achieves comparable performance which also exceeds the
other two baselines. Without the utilization of pushing, the
performance of the variant decrease by 0.7% in task success
rate and increase the number of motion by 0.1 in efficiency.
Although target information is considered in MASK-VPG
and GI, they still face the challenges of occlusion due to
the limited action primitives and fail to generate collision-
free grasp poses because of the neglect of spatial constraint.
Our GE-Grasp generates valid action candidates by designing
diverse action primitives and SCT, outperforming the state-
of-the-art method GI by 12.1% (98.8% vs 86.7%) in task
success rate and 42.8% (1.38 vs 1.97) in motion efficiency.

To investigate the importance of different components of
our framework, we remove nontarget grasping, generators,
and evaluators from the original GE-Grasp, respectively, to
create a series of variants. The performance of these variants
is also tested on the random clutter cases with results shown
in Fig. 7 and Table I. Without nontarget grasping, the ME
and SR fell by 7.4% and 4.6% respectively, demonstrating
the benefit of diversity of action primitives. The ME and
SR fell by 50.4% and 13.8% with frequent collisions when
replacing the generator with a random grasp sampler. The
evaluator aims to choose the best action by assessing the
benefits of action candidates, and we measure the importance
by replacing the evaluators with random sampling. Although



Fig. 9: Performance of grasping in challenging clutter
with different cases. The plot clearly demonstrates the
effectiveness of our approach which achieves a task success
rate of 95% (bottom) with 3.0 motions in average (top).

there are few collisions, the robot keeps performing actions
that are irrelevant to the target capturing, resulting in a
significant decrease in ME by 55.7% and SR by 17.6%.

2) Challenging clutter: To further verify the effectiveness
and efficiency of our approach on more adversarial cases, we
evaluate GE-Grasp on 8 challenging cases provided by [25],
where adversarial arrangements are designed to ensure that
direct grasping towards the target is infeasible (see Fig. 8).
Fig. 9 and Table II illustrate the performance of different
methods in the challenging clutter test, and the evaluation
metric remains the same as that in random clutter. The
effectiveness and the efficiency of the no-pushing variant
drop significantly in the challenging cases due to the limited
action primitives and the lack of the ability to efficiently
break structured patterns. On the contrary, the complete GE-
Grasp improves the success rate by 7.5% (95.0% vs. 87.5%)
and decreases the number of actions by 0.5 (3.0 vs. 3.5)
respectively compared to the state-of-art method GI.

MASK-VPG does not behave smart enough to coordinate
appropriately between pushing and grasping, and repeatedly
executes unnecessary pushing when the target is already
graspable. GI alleviates this problem by introducing a coordi-
nator module, however, neither of the two baseline methods
can effectively avoid potential collisions, especially when
there are multiple objects densely stacked together, which
leads to failures of grasping. The reason may be that the
pixel-wise mapping network adopted is not sensitive to the
details that cause collisions. Our GE-Grasp first provides
multiple collision-free action candidates and then selects the
optimal one through the evaluators to ensure the success rate
of execution while improving task efficiency. By observing
the behavior of the robot, we discover that effective non-
target grasping considerably reduces the crowdedness and
occlusion around the target object so that the robot has a good
chance to capture the target in the next step. Pushing may
introduce some uncertainties (e.g., the sliding or rolling of
objects), making it less efficient. However, in some scenarios
where grasping cannot be performed directly, the ability of
pushing to break the scene structure is indispensable.

Method Success Rate (%) Motions

MASK-VPG [25], [26] 70.2 4.06±0.83
GI [25] 87.5 3.51±0.90
GE-Grasp w/o pus. 77.2 4.79±0.97
GE-Grasp 95.0 3.02±0.52

TABLE II: The success rate and the average number of
motions for grasping in the challenging clutter. The no-
pushing variant struggles in dealing with adversarial cases
where valid grasp poses are hard to acquire.

(a) blue cube. (b) red cylinder. (c) sponge. (d) spray bottle.

Fig. 10: Test cases of the “Grasping the Invisible” task
in the real-world environment. The target is buried in the
clutter and invisible initially.

E. Real-world Experiments

In order to evaluate the effectiveness and efficiency of
our GE-Grasp, we conducted experiments in the real world
where the model is trained with the data collected in the
simulation environment. We apply a UR5e robot arm with
an RG2 gripper which implements operations on the desktop
in front of them. Due to the space limitation, the Realsense
D435 camera is mounted on the gripper and captures visual
information in a fixed position and orientation. In different
experimental settings, the targets are toy blocks or everyday
objects with different shapes and colors respectively.

1) Grasping the invisible: The problem of “Grasping the
Invisible” is proposed in [25], where the target object is
initially covered by other entities and is invisible to the
cameras (see Fig. 10). Therefore, the robot needs to explore
the workspace to find the target for subsequent grasping.
Since we do not focus on the target not appearing in sight,
we modify the original experimental settings in the following
way for a fair comparison with the baseline methods. Before
the action sequences start, a horizontal push towards the
highest clutter is implemented to break the structure and
investigate whether the target is buried inside.

Following the settings in [25], the grasp is considered
successful if the robot picks up the target within 15 motions.
We execute the experiments by 10 runs on each case, where
the results are shown in Table III. MASK-VPG achieves
a success rate of 67.5% with an average number of 11.6
motions, and GI performs better than MASK-VPG with a
success rate of 85% and an average number of 9.8 motions.
Noticeable degradation in motion efficiency is observed for
both MASK-VPG and GI in real-world settings compared
with experiments in the simulated environment. Our GE-
Grasp outperforms baseline methods by a large margin with
a success rate of 97.5% and only a 3.7 average number of
motions due to the diverse action primitives and the spatial
constraint in action candidate generation. Furthermore, we



Method Success Rate (%) Motions

MASK-VPG [25], [26] 67.5 11.6
GI [25] 85.0 9.8
GE-Grasp 97.5 3.7

TABLE III: The success rate and the average number of
motions for the task of “Grasping the Invisible”.

Fig. 11: Examples of the test cases containing everyday
objects. The clutter consists of 12 different everyday objects
with one of which is assigned as the target each time.

also rectified the definition of successful grasp that the robot
picks up the target within 5 motions, which is the same as
that in simulation experiments. In this more strict criterion,
GE-Grasp achieves a 95% success rate which is comparable
with the performance in the simulated environment, indicat-
ing the strong generalization ability of GE-Grasp.

2) Everyday objects: To further investigate the generaliza-
tion ability of our GE-Grasp, we change the target to novel
objects in daily life while the model training still leverages
the data collected in the simulated environment. The novel
objects include stuffed toys, phone chargers, staplers, etc.as
shown in Fig. 11. The test scenarios contain 12 objects with
different colors and shapes, and one of them is randomly
selected as the target object with large parts occluded. The
experiment is conducted by 10 runs for each case, and our
GE-Grasp achieves a task success rate of 94.2% with 4.1
motions on average. The results clearly show that our method
can be generalized to novel objects in different sizes and
shapes with the training blocks, which verifies the practicality
of GE-Grasp in realistic applications.

V. CONCLUSIONS AND DISCUSSION

In this work, we have proposed the GE-Grasp framework
for target grasping in dense clutter. The presented GE-
Grasp leverages diverse action primitives for occluded ob-
ject removal and employs a generator-evaluator architecture
to avoid spatial collisions so that our approach efficiently
grasps objects in dense clutter with promising success rates.
Extensive experiments in both simulated and real-world envi-
ronments have demonstrated the effectiveness and efficiency
of our method. Moreover, GE-Grasp achieves comparable
performance in the real world as that in the simulated
environment, which indicates a strong generalization ability.
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