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Abstract—In this paper, we propose a binarized detection learning method (BiDet) for efficient object detection. Conventional network
binarization methods directly quantize the weights and activations in one-stage or two-stage detectors with constrained
representational capacity, so that the information redundancy in the networks causes numerous false positives and degrades the
performance significantly. On the contrary, our BiDet fully utilizes the representational capacity of the binary neural networks by
redundancy removal, through which the detection precision is enhanced with alleviated false positives. Specifically, we generalize the
information bottleneck (IB) principle to object detection, where the amount of information in the high-level feature maps is constrained
and the mutual information between the feature maps and object detection is maximized. Meanwhile, we learn sparse object priors so
that the posteriors are concentrated on informative detection prediction with false positive elimination. Since BiDet employs a fixed IB
trade-off to balance the total and relative information contained in the high-level feature maps, the information compression leads to
ineffective utilization of the network capacity or insufficient redundancy removal for input in different complexity. To address this, we
further present binary neural networks with automatic information compression (AutoBiDet) to automatically adjust the IB trade-off for
each input according to the complexity. Moreover, we further propose the class-aware sparse object priors by assigning different
sparsity to objects in various classes, so that the false positives are alleviated more effectively without recall decrease. Extensive
experiments on the PASCAL VOC and COCO datasets show that our BiDet and AutoBiDet outperform the state-of-the-art binarized
object detectors by a sizable margin.

Index Terms—Binary neural networks, object detection, information bottleneck, automatic information compression, sparse priors
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1 INTRODUCTION

CONVOLUTIONAL neural network (CNN) based object
detectors [8], [13], [43], [31], [29], [65] have achieved

state-of-the-art performance due to its strong discriminative
power and generalization ability. However, the CNN based
detection methods usually require massive computation
and storage resources to achieve ideal performance, which
limits their deployment on mobile devices. Therefore, it
is desirable to develop object detectors with lightweight
architectures and few parameters.

To reduce the complexity of deep neural networks, sev-
eral deep model compression methods have been proposed
including pruning [36], [63], [15], low-rank decomposition
[26], [39], [21], quantization [54], [24], [10], knowledge dis-
tillation [56], [52], [4], efficient architecture design [45], [62],
[40] and efficient architecture search [57], [48], [30]. Among
these methods, network quantization reduces the bitwidth
of the network parameters and activations for efficient
inference. In the extreme cases, binarizing weights and
activations of neural networks decreases the storage and
computational cost by 32× and 64× respectively. However,
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directly deploying binary neural networks with constrained
representational capacity in object detection causes numer-
ous false positives due to the information redundancy in the
networks.

In this paper, we present a binarized detector learn-
ing method (BiDet) that quantizes both the backbone part
and the detection part for efficient object detection. Unlike
existing methods which directly binarize the weights and
activations in one-stage or two-stage detectors, our method
fully utilizes the representational capacity of the binary neu-
ral networks for object detection via redundancy removal.
Consequently, the detection precision is enhanced with false
positive elimination. More specifically, we impose the in-
formation bottleneck (IB) principle on binarized object de-
tector learning, where we simultaneously limit the amount
of information in high-level feature maps and maximize
the mutual information between object detection and the
learned feature maps. Meanwhile, we employ sparse object
priors (SOP) in IB, so that the posteriors are enforced to
be concentrated on informative object prediction and the
uninformative false positives are eliminated. Figure 1 (a)
and (b) show an example of predicted positives obtained by
Xnor-Net [41] and our BiDet respectively, where the false
positives are significantly reduced in the latter. Figure 1
(c) and (d) depict the information plane dynamics for the
training and test sets respectively. The horizontal axis means
the mutual information between the high-level feature maps
and input, and the vertical axis represents the mutual in-
formation between the object and the feature maps. Our
BiDet enhances the precision by redundancy removal and
full utilization of network capacity.
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Figure 1. An example of the predicted objects with the binarized SSD
detector on PASCAL VOC. (a) and (b) demonstrate the detection results
via Xnor-Net and the proposed BiDet respectively, where the false
positives are significantly reduced in our method. (c) and (d) reveal the
information plane dynamics for the training and test sets respectively.
The horizontal axis means the mutual information between the high-
level feature map and input, and the vertical axis represents the mutual
information between object detection and the feature map. Compared
with Xnor-Net, our method removes the redundant information and
fully utilizes the network capacity to achieve higher performance. (best
viewed in color).

In fact, the optimal IB trade-off between the total and
relative information of the high-level feature maps varies
for different input samples. While BiDet applies a fixed IB
trade-off for networks with constant capacity, the informa-
tion compression leads to ineffective utilization of network
capacity for input in low complexity and results in incom-
plete redundancy removal for input in high complexity. In
order to address these limitations, we further present binary
neural networks with automatic information compression
(AutoBiDet) to automatically adjust the trade-off for each
input according to the input complexity. Specifically, we em-
ploy the generative adversarial network (GAN) [11] based
Complexity EStimator (CES) to evaluate the input complex-
ity. The generator aims to reconstruct the input based on the
high-level feature maps learned by the backbone. High dis-
criminator probability that the reconstructed sample is real
indicates low input complexity, so that the network capacity
is sufficient to extract the image information for reconstruc-
tion. As a result, less compression should be adopted to
fully utilize the network capacity. On the contrary, low
discriminator probability requires more compression for the
binarized object detectors in order to remove redundancy
thoroughly. We train the binarized object detector with the
dynamic IB trade-off that is adjusted according to the input
complexity. Meanwhile, the sparse object priors (SOP) in
BiDet equally limit the predicted positives for all classes.
Because false positives are more likely to emerge in classes
with more predicted positives, SOP results in degraded
recall for classes with few predicted positives and leads to
incomplete false positive elimination for classes with many
predicted positives. We propose class-aware sparse object
priors (C-SOP) that assign different sparsity to objects in
various classes, so that the false positives are alleviated more
effectively without recall decrease for all classes. Extensive

experiments on the PASCAL VOC [7] and COCO [27]
datasets show that our BiDet and AutoBiDet outperform
the state-of-the-art binary neural networks in object detec-
tion across various architectures and detection frameworks.
Moreover, the presented techniques in BiDet and AutoBiDet
can be integrated to other compression methods including
quantization, pruning and efficient architecture design to
enhance the vanilla models.

This paper is an extended version of our conference
paper [55], where we make the following new contributions:

1) We further propose a new AutoBiDet method based
on BiDet in the conference version by automatically
adjusting the IB trade-off with the input complexity,
so that the network capacity is fully utilized and the
redundancy is completely removed for all input.

2) We present class-aware sparse object priors (C-SOP) to
assign different sparsity to objects in various classes,
so that false positives are alleviated more effectively
without recall decrease.

3) We conduct extensive experiments on PASCAL VOC
and COCO to evaluate the proposed BiDet and Au-
toBiDet, and the results show the effectiveness and
the efficiency of the presented methods. Moreover, we
integrate the proposed techniques to other compression
methods including quantization, pruning and efficient
architecture design to enhance the vanilla models.

2 RELATED WORK

In this section, we briefly review three related topics: 1)
network quantization, 2) object detection and 3) information
bottleneck.

Network Quantization: Network quantization has been
widely studied in recent years due to its efficiency in storage
and computation. Existing methods can be divided into two
categories: neural networks with weights and activations
in one bit or multiple bits. Binary neural networks reduce
the model complexity significantly due to the extremely
high compression ratio. Hubara et al. [19] and Rastegari
et al. [41] binarized both weights and activations in neural
networks and replaced the multiply-accumulation with xnor
and bitcount operations, where straight-through estimators
were applied to relax the non-differentiable sign function
for back-propagation. Liu et al. [32] added extra shortcut
between consecutive convolutional blocks to strengthen
the representational capacity of the network. They also
used custom gradients to optimize the non-differentiable
networks. Yang et al. [60] leveraged the soft quantization
strategy by approximating the rigid sign function with the
sigmoid layer, where the discrepancy between the optimiza-
tion objective and the gradient was minimized. Because
binary neural networks perform poorly on difficult tasks
such as object detection due to the low representational
capacity, multi-bit quantization strategies have been pro-
posed with wider bitwidth. Jacob et al. [20] presented an
8-bit quantized model for inference in object detection and
their method could be integrated with efficient architectures.
Wei et al. [56] applied the knowledge distillation to learn 8-
bit neural networks in small size from large full-precision
models. Li et al. [24] proposed fully quantized neural net-
works in four bits with hardware-friendly implementation.
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Figure 2. The pipeline of the information bottleneck based detectors, which consists of the backbone part and the detection part. The solid line
represents the forward propagation in the network, while the dashed line means sampling from a parameterized distribution Φ. The high-level
feature map F is sampled from the distribution parameterized by the backbone network. The one-stage and two-stage detector framework can
be both employed in the detection part of our BiDet. For one-stage detectors, the head network parameterizes the posterior distribution of object
classes and location. For two-stage detectors, Region Proposal Networks (RPN) parameterize the prior distribution of location and the posteriors
are parameterized by the refining networks. (best viewed in color).

Meanwhile, the instabilities during training were overcome
by the presented techniques. Nevertheless, multi-bit neural
networks still suffer from heavy storage and computation
cost. Directly applying binary neural networks with con-
strained representational power in object detection leads
to numerous false positives and significantly degrades the
performance due to the redundancy in the networks.

Object Detection: Object detection has aroused compre-
hensive interest in computer vision due to its wide appli-
cation. Modern CNN based detectors are categorized into
two-stage and one-stage detectors. In the former, R-CNN
[9] was among the earliest CNN-based detectors with the
pipeline of bounding box regression and classification. Pro-
gressive improvements were proposed for better efficiency
and effectiveness. Fast R-CNN [8] presented the ROIpooling
in the detection framework to achieve better accuracy and
faster inference. Faster R-CNN [43] proposed the Region
Proposal Networks to effectively generate region proposals
instead of hand-crafted ones. FPN [28] introduced top-down
architectures with lateral connections and the multi-scale
features to integrate low-level and high-level features. In the
latter regard, SSD [31] and YOLO [42] directly predicted the
bounding box and the class without region proposal genera-
tion, so that real-time inference was achieved on GPUs with
competitive accuracy. RetinaNet [29] proposed the focal loss
to solve the problem of foreground-background class im-
balance. However, CNN based detectors suffer from heavy
storage and computational cost so that their deployment is
limited. To address this, some efficient architectures have
been designed for object detection. Light-head R-CNN [25]
employed thin feature maps for ROI warping and R-CNN
subnet to reduce the computational complexity. Pelee [53]
utilized the variant of DenseNet [18] to improve the network
connectivity and applied different scales of feature maps
to extract information in various resolution. ThunderNet
[40] added the context enhancement and spatial attention
module to enhance the network capability, and modified the
backbone architectures by changing the filter size to retain
information. Nevertheless, these methods still require large
memory, which is prohibited in portable devices.

Information Bottleneck: The information bottleneck (IB)

principle was first proposed by [49] with the goal of extract-
ing relevant information of the input regarding the task,
and was widely applied in compression. The IB principle
enforces the mutual information between the input and
learned features to be minimized while simultaneously
maximizing the mutual information between the features
and groundtruth of the tasks. Louizos et al. [33] and Ullrich
et al. [51] utilized the Minimal Description Length (MDL)
principle [16] that was equivalent to IB to stochastically
quantize deep neural networks. Moreover, they used the
sparse horseshoe and Gaussian mixture priors for weight
learning in order to reduce the quantization errors. Dai et
al. [6] pruned individual neurons via variational IB so that
redundancy between adjacent layers was minimized by ag-
gregating useful information in a subset of neurons. Despite
the network compression, IB is also utilized in compact
feature learning. Amjad et al. [1] proposed stochastic deep
neural networks where IB could be utilized to learn efficient
representations for classification. Shen et al. [46] imposed IB
on existing hash models to generate effective binary rep-
resentations so that the data semantics were fully utilized.
To quantitatively analyze the dynamics on the information
plane, Wu et al. [59], [58] formulated the learnability of
different IB trade-off by the second-order calculus of vari-
ations. In this paper, we extend the IB principle to squeeze
the redundancy in binary detection networks, so that the
false positives are alleviated and the detection precision is
significantly enhanced.

3 APPROACH

We first present the efficient binarized object detectors called
BiDet, and then detail the binary detection networks with
automatic information compression named AutoBiDet.

3.1 BiDet
In this section, we first extend the IB principle to object
detection for information redundancy removal. Then we
present the details of learning sparse object priors for object
detection, which concentrate posteriors on informative pre-
diction with false positive elimination. Finally, we propose
the efficient binarized object detectors.
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3.1.1 Information Bottleneck for Object Detection
The information bottleneck (IB) principle directly relates to
compression with the best hypothesis that the data misfit
and the model complexity should simultaneously be min-
imized. The redundant information irrelevant to the task
is exclusive in the compressed model and the capacity of
the lightweight model is fully utilized. The task of object
detection can be regarded as a Markov process with the
following Markov chain:

X → F → L,C (1)

where X means the input images and F stands for the high-
level feature maps output by the backbone part. C and L
represent the classes and location of the predicted objects
respectively. According to the Markov chain, the objective
of the IB principle is written as follows:

min
φb,φd

I(X;F )− βI(F ;C,L) (2)

where φb and φd are the parameters of the backbone and
the detection part respectively. I(X;Y ) means the mutual
information between two random variables X and Y . Mini-
mizing the mutual information between the images and the
high-level feature maps constrains the amount of informa-
tion that the detector extracts, and maximizing the mutual
information between the high-level feature maps and object
detection enforces the detector to preserve more information
related to the task. As a result, the redundant information
irrelevant to object detection is removed. Figure 2 shows
the pipeline for information bottleneck based detectors, the
IB principle can be imposed on the conventional one-stage
and two-stage detectors. We rewrite the first term of (2)
according to the definition of mutual information:

I(X;F ) = Ex∼p(x)Ef∼p(f |x) log
p(f |x)
p(f)

(3)

where x and f are the input images and the correspond-
ing high-level feature maps. p(x) and p(f) are the prior
distribution of x and f respectively, and E represents the
expectation. p(f |x) is the posterior distribution of the high-
level feature map conditioned on the input. We parameter-
ize p(f |x) by the backbone due to its intractability, where
evidence-lower-bound (ELBO) minimization is applied for
relaxation. To estimate I(X;F ), we sample the training set
to obtain the image x and sample the distribution parame-
terized by the backbone to acquire the corresponding high-
level feature map f .

The location and classification of objects based on the
high-level feature maps are predicted independently, so
that the mutual information in the second term of (2) is
factorized:

I(F ;C,L) = I(F ;C) + I(F ;L) (4)

Similar to (3), we rewrite the mutual information between
the high-level feature maps and the classes as follows:

I(F ;C) = Ef∼p(f |x)Ec∼p(c|f) log
p(c|f)
p(c)

(5)

where c is the object class labels. p(c) and p(c|f) are the
prior class distribution and posterior class distribution when
given the feature maps respectively. Same as the calculation

(a) (b)

Figure 3. The detected objects and the corresponding confidence score
(a) before and (b) after optimizing (6). The contrast of confidence score
among different detected objects is significantly enlarged by minimizing
alternate objective. As the NMS eliminates the positives with confidence
score lower than the threshold, the sparse object priors are acquired and
the posteriors are enforced to be concentrated on informative prediction.
(best viewed in color).

of (3), we employ the classification networks in the detection
part to parameterize the posterior distribution. Meanwhile,
we divide the images into blocks for multiple object detec-
tion. For one-stage detectors such as SSD [31], we project
the cells of the high-level feature maps to the raw image to
obtain the block partition. For two-stage detectors such as
Faster R-CNN [43], we scale the ROI to the original image
for block split. c ∈ Z1×b represents the object class in b
blocks of the image. We define ci as the ith element of c,
which demonstrates the class of the object whose center is
in the ith block of the image. The class of a block is assigned
to background if the block does not contain the centers of
any groundtruth objects.

As the localization contains shift parameters and scale
parameters for anchors, we rewrite the mutual information
between the object location and high-level feature maps:

I(F ;L) = Ef∼p(f |x)El1∼p(l1|f)El2∼p(l2|f) log
p(l1|f)p(l2|f)
p(l1)p(l2)

where l1 ∈ R2×b represents the horizontal and vertical
shift offset of the anchors in b blocks of the image, and
l2 ∈ R2×b means the height and width scale offset of the
anchors. For the anchor whose center (x, y) is in the ith
block with height h and width w, the offset changes the
bounding box in the following way: (x, y)→ (x, y)+l1,i and
(h,w) → (h,w) · exp(l2,i), where l1,i and l2,i represent the
ith column of l1 and l2. The priors and the posteriors of shift
offset conditioned on the feature maps are denoted as p(l1)
and p(l1|f) respectively. Similarly, the scaling offset has
the prior and the posteriors given feature maps p(l2) and
p(l2|f). We leverage the localization branch in the detection
part for posterior distribution parameterization.

3.1.2 Learning Sparse Object Priors

Since the feature maps are binarized in BiDet, we utilize the
binomial distribution with equal probability as the priors
for each element of the high-level feature map f . We assign
the priors for object localization in the following form:
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p(l1,i) = N(µ0
1,i,Σ

0
1,i) and p(l2,i) = N(µ0

2,i,Σ
0
2,i), where

N(µ,Σ) means the Gaussian distribution with mean µ and
covariance matrix Σ. For one-stage detectors, the object
localization priors p(l1,i) and p(l2,i) are hypothesized to be
the two-dimensional standard normal distribution. For two-
stage detectors, Region Proposal Networks (RPN) output
the parameters of the Gaussian priors.

As numerous false positives emerge in the detection
prediction of binary networks, learning sparse object priors
for detection part enforces the posteriors to be concentrated
on informative detection prediction with false positive elim-
ination. The priors for object classification is defined as
follows:

p(ci) = IMi · cat(
1

n+ 1
· 1n+1) + (1− IMi) · cat([1,0n])

where Ix is the indicator function with I1 = 1 and I0 = 0,
and Mi is the ith element of the block mask M ∈ {0, 1}1×b.
cat(K) means the categorical distribution with the param-
eter K. 1n and 0n are the all-one and zero vectors in n
dimensions respectively, where n is the number of object
classes. The multinomial distribution with equal probability
is utilized for class priors in the ith block ifMi equals to one.
Otherwise, the categorical distribution with the probability
one for background and zero probability for other object
classes is leveraged for the prior class distribution. When
Mi equals to zero, the class branch in the detection part
definitely predicts the background for object in the ith block
according to (5). In order to obtain sparse priors for object
classification with fewer predicted positives, we minimize
the L1 norm of the block mask M . We propose an alter-
native way to optimize M due to the non-differentiability,
where the objective is written as follows:

min
sj
− 1

m

m∑
j=1

sj log sj (6)

where m represents the number of detected foreground
objects in the image. sj is the normalized foreground confi-
dence score of the jth bounding box in the image, and the
normalization is performed over the foreground confidence
score of all m bounding boxes. We define the normaliza-
tion as sj =

poj∑m
k=1 p

o
k

, where poj is the original foreground
confidence score of the jth bounding box in the image. As
shown in Figure 3, minimizing (6) increases the contrast
of foreground confidence score among different predicted
positives, and the predicted objects with low foreground
confidence score are assigned to be negative by the non-
maximum suppression (NMS) algorithms [37]. Therefore,
the block mask becomes sparser with fewer predicted ob-
jects, and the posteriors are concentrated on informative
prediction with false positive elimination.

3.1.3 Efficient Binarized Object Detectors
In this section, we first briefly introduce neural networks
with binary weights and activations, and then detail the
learning objectives of our BiDet. Let W l

r be the real-valued
weights and Al

r be the full-precision activations of the lth
layer in a given L-layer detection model. During the forward
propagation, the weights and activations are binarized via
the sign function: W l

b = sign(W l
r) and Al

b = sign(W l
r �

Al
b). sign means the element-wise sign function which

maps the number larger than zero to one and otherwise to
minus one, and� indicates the element-wise binary product
consisting of xnor and bitcount operations. Due to the
non-differentiability of the sign function, straight-through
estimator (STE) is employed to calculate the approximate
gradients and update the real-valued weights in the back-
propagation stage. The learning objective for the proposed
BiDet is written as follows:

min J = J1 + J2

= (
∑
t,s

log
p(fst|x)
p(fst)

− β
b∑

i=1

log
p(ci|f)p(l1,i|f)p(l2,i|f)

p(ci)p(l1,i)p(l2,i)
)

− γ · 1
m

m∑
j=1

sj log sj (7)

where γ is a hyperparameter that balances the importance of
sparsity in object priors. The posterior distribution p(ci|f)
is hypothesized to be the categorical distribution cat(Ki),
where Ki ∈ R1×(n+1) is the parameter and n is the
number of classes. We assume the posterior distribution of
the shift and scale offset follows the Gaussian distribution:
p(l1,i|f) = N(µ1,i,Σ1,i) and p(l2,i|f) = N(µ2,i,Σ2,i). The
posteriors of the element in the sth row and tth column
of binary high-level feature maps p(fst|x) are assigned to
binomial distribution cat([pts, 1 − pts]), where pts is the
probability for fst to be one. All the posterior distribution
is parameterized by neural networks. J1 represents for the
information bottleneck employed in object detection, which
aims to remove information redundancy and fully utilize
the representational power of the binary neural networks.
The goal of J2 is to enforce the object priors to be sparse
so that the posteriors are encouraged to be concentrated on
informative prediction with false positive elimination.

In the learning objective, p(fst) in the binomial distri-
bution is a constant. Meanwhile, the sparse object class
priors are imposed via J2 so that p(ci) is also regarded
as a constant. For one-stage detectors, constant p(l1,i) and
p(l2,i) follow standard normal distribution. For two-stage
detectors, p(l1,i) and p(l2,i) are parameterized by RPN
which is learned by the objective function. Following [43],
we iteratively train the RPN and the refining networks that
predict priors and posteriors of bounding box location offset
respectively, so that informative distribution of bounding
box location can be obtained. The last layer of the backbone
that outputs the parameters of the binary high-level feature
maps is real-valued in training for Monte-Carlo sampling
and is binarized with the sign function for deterministic for-
ward propagation during inference. Meanwhile, the layers
that output the parameters for object class and location dis-
tribution remain real-valued for accurate detection. During
inference, we drop the network branch of covariance matrix
for location offset, and assign all location prediction with
the mean value of the Gaussian distribution to accelerate
computation. Moreover, the prediction of object classes is
set to that with the maximum probability to avoid time-
consuming stochastic sampling in inference.

3.2 AutoBiDet
We first propose the binarized object detectors with auto-
matic information compression, and then present the class-
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Figure 4. The motivation of the proposed AutoBiDet. (a) and (b) illustrate the images in low and high complexity respectively. (c) and (d) depict
the information plane for the representations of (a) and (b). The information plane is divided into the Impossible region and Possible region by the
Pareto frontier, where the learned representations can only be in the Possible region. The mutual information between the high-level feature maps
and the input is limited by the network capacity so that the high-level feature maps are restricted in the region of Possible (I). When the constant
network capacity is fully utilized, the high level feature maps of images in high complexity carry less information regarding to the input due to the
more significant information loss and vice versa. OA and OB mean the optimal representations for image (a) and (b) in the information plane, and
the optimal hyperparameter β in (2) to control the IB trade-off is denoted as βA and βB respectively. As we apply the fixed IB trade-off in BiDet
which is represented by O with the hyperparameter βO in (2), the resulted representations for image (a) and (b) denoted as A and B are far from OA

and OB . For images in low complexity, the fixed IB trade-off causes excessive compression and network capacity is not fully utilized. For images in
high complexity, the insufficient redundancy removal obstacles the acquisition of representations in the Pareto frontier. When the network capacity
is occupied by redundancy, the achievable frontier for representations is degraded significantly compared with the Pareto frontier.

aware sparse object priors to effectively alleviate false posi-
tives without recall decrease.

3.2.1 Binarized Object Detectors with Automatic Informa-
tion Compression
The optimal IB trade-off varies with different input samples.
Limiting the total information of the representation is more
important for images in high complexity to completely
remove the redundancy, while increasing the relevant in-
formation of learned representations is more significant for
samples in low complexity to fully utilize the network
capacity. As BiDet applies the fixed IB trade-off, the in-
formation compression leads to insufficient utilization of
network capacity for images in low complexity and results
in incomplete redundancy removal for images in high com-
plexity. In order to address these limitations, we further
propose binary neural networks with automatic information
compression, where the optimal IB trade-off is dynamically
selected according to the input samples.

Figure 4 demonstrates the information plane for the
high-level feature maps of images in low and high com-
plexity. According to the Pareto frontier in the information
plane, the relevant information is increased when the high-
level feature maps carry more information. As the network
capacity of binary detectors is constrained, the learned high-
level feature maps are limited in the region of Possible (I).
When the constant network capacity is fully utilized, the
high level feature maps of images in high complexity carry
less information regarding to the input due to the more sig-
nificant information loss during compression. The optimal
IB trade-off is obtained when fully utilizing the network
capacity and removing the redundancy to achieve the Pareto
frontier. OA and OB mean the optimal representations of
images in low and high complexity in the information
plane, and the optimal hyperparameter β in (2) to control
the IB trade-off is denoted as βA and βB respectively. The
fixed IB trade-off denoted as O with the hyperparameter

βO results in representations in A and B for images in
low and high complexity respectively, which are far from
OA and OB respectively. The fixed IB trade-off leads to
excessive compression for images in low complexity, where
the network capacity is not fully utilized. For images in
high complexity, the insufficient redundancy removal fails
to learn representations in the Pareto frontier. When the
network capacity is occupied by redundancy, the achiev-
able frontier for representations is degraded significantly
compared with the Pareto frontier. The proposed AutoBiDet
automatically adjusts the IB trade-off according to the input
complexity, so that the network capacity is fully utilized
with complete redundancy removal for all samples.

Following [50], [38], we employ the complexity defini-
tion C(x) that is widely adopted:

C(x) = inf
w
L(p(l, c|f)) (8)

where C(x) means the complexity of x, andw represents the
network weights. L(p(l, c|f)) is the discriminative loss for
the prediction distribution p(l, c|f). The samples that result
in higher discriminative loss for the optimal neural net-
works are more complex. In our method, we employ the log
likelihood for the discriminative loss, which is represented
as L(p(l, c|f)) = − log p(l = lx, c = cx|f) = − log p(l =
lx|f)p(c = cx|f), where lx and cx are the groundtruth
location and class of the image x. The complexity cannot be
directly calculated during training, since the lower bound
of L(p(l, c|f)) for each image can only be obtained after
acquiring the well-trained models. In order to leveraging the
optimal IB trade-off during the training process, we propose
the Complexity EStimator (CES) based on GAN to evaluate
the sample complexity in training.

The CES consists of a generator and a discriminator.
The generator aims to recover the input according to the
high-level feature maps learned via the backbone, and the
discriminator outputs the probability that the reconstructed
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Figure 5. The pipeline of AutoBiDet. The black solid line, the red solid line and the black dashed line represent the forward propagation, the
backward propagation and the IB trade-off transition in AutoBiDet respectively. The backbone part learns the high-level feature maps to represent
the input image, and the detection part predicts the class and location of the objects in the input image according to the high-level feature map. The
complexity estimator reconstructs the input image via the generator, and the discriminator outputs the probability that the recovered image comes
from the true sample set. The probability from the discriminator is used to acquire the optimal IB trade-off via the transformation functions, and the
dynamic IB trade-off is employed to train the backbone and detection networks. As a result, the network capacity is fully utilized and the redundancy
is effectively removed for all input.

image is the real one. Figure 5 shows the pipeline of the pre-
sented AutoBiDet. High probability from the discriminator
indicates that the network capacity is sufficient to extract the
contained information in images for reconstruction, which
indicates low input complexity. In contrast, low probability
of the discriminator shows images in high complexity, so
that the network capacity is deficient for precise image
representation. Since less compression should be adopted
for images in low complexity and vice versa, the discrimi-
nator probability is leveraged to automatically adjust the IB
trade-off. We theoretically and empirically prove the strong
correlation between the discriminator probability and image
complexity in Appendix C. The CES and the binarized object
detectors are iteratively optimized in each round. The GAN
loss is applied for training the CES:

min
G

max
D

logD(x) + log(1−D(G(f))) (9)

where G andDmean the generator and the discriminator re-
spectively. Then we train the binarized object detectors with
the objectives (7) that replaces fixed β with T (D(G(f))).
T is the transformation function that maps the discrimi-
nator probability to the hyperparameter β. Since high dis-
criminator probability depicts large weights for the mutual
information between the learned high-level feature maps
and object detection, we employ the linear, exponential and
sine transformation functions with different convexity as
follows:

T (D(G(f))) = δ1 + θ1D(G(f)) (10)
T (D(G(f))) = δ2 exp(θ2D(G(f)))
T (D(G(f))) = δ3 + θ3 · sin((π/2) · D(G(f)))

where δ1 ∼ δ3 and θ1 ∼ θ3 are hyperparameters.

3.2.2 Class-aware Sparse Object Priors
Since the sparse object priors (SOP) presented in BiDet
constrain the number of predicted positives in each class
equally, the recall is decreased for classes with few predicted

positives and the false positive alleviation is insufficient
for classes with many predicted positives. Figure 6 demon-
strates the prediction for an example. It is observed that false
positives are more likely to emerge in classes with many
predicted positives. As a result, it is beneficial to impose
strict object sparsity constraint on the classes with many
predicted positives and less sparse object priors on classes
with few predicted positives. In order to eliminate false
positives effectively without recall degradation, we propose
class-aware sparse object priors (C-SOP) to apply different
sparsity on objects in various classes. The C-SOP is defined
as follows:

p(ci) = IMi · cat(λ(x)) + (1− IMi) · cat([1,0n])

where λ(x) ∈ [0, 1]n+1 illustrates the parameters of the
categorical prior distribution for object classes in x. Let us
denote the tth element of λ(x) as λt(x). For the given input
image x, λt(x) is expected to be small if the number of
predicted positives in the tth class is large, so that numerous
false positives can be alleviated effectively. On the contrary,
we require λt(x) to be large when there are only few
predicted positives in the tth class, so that the recall is not
degraded. Similar to BiDet, minimizing the L1 norm of M
to obtain the C-SOP is non-differentiable. We also propose
an alternative objective to solve the optimization difficulty
and avoid the hand-crafted design for λ(x) in the following:

min
uc
j

∑
c

− 1

nc

mc∑
j=1

ucj log u
c
j (11)

where nc is the number of groundtruth objects in the cth
class. ucj means the normalized foreground confidence score
of the jth bounding box in the cth class, which is normalized
across the foreground confidence score of all mc bounding
boxes in the cth class. The definition of ucj is ucj =

poj,c∑mc
k=1 p

o
k,c

,
where pok,c is the original foreground confidence score of the
jth bounding box of the cth class. ucj should be encouraged
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(a) Image (b) Bottle (c) Chair (d) TV monitor (e) Person

Figure 6. (a) The detection prediction of a sampled image, where boxes in different colors illustrate the object predictions for various classes. (b),
(c), (d) and (e) demonstrate the foreground confidence score of all predicted positives for the classes of bottles, chairs, TV monitors and persons
respectively, where blue and orange bars mean the true and false positives respectively. It is obvious that the predicted positives for the TV monitor
are the fewest among the four classes, which leads to the minimum false positives among all classes. On the contrary, the class of persons obtain
the most predicted positives and the false positives of persons are also the maximum.

to have large contrast among different predicted positives
so that the posteriors are concentrated on the informa-
tive predicted positives with high foreground confidence
score. Similar to BiDet, the false positives with low fore-
ground confidence score is eliminated by NMS. Since more
groundtruth positives also increase predicted positives, we
add the weight 1

nc
in order to offset the impact brought by

the number of groundtruth positives.

4 EXPERIMENTS

In this section, we conducted comprehensive experiments to
evaluate our proposed method on two datasets for object de-
tection: PASCAL VOC [7] and COCO [27]. We first describe
the implementation details of our BiDet and AutoBiDet.
Secondly, we validate the effectiveness of IB and SOP, and
investigate influence of automatic information compression
and C-SOP for binarized object detectors by the ablation
study. Thirdly, we compare our BiDet and AutoBiDet with
state-of-the-art binary neural networks in the task of object
detection to demonstrate the superiority. Finally, we gener-
alize the presented techniques in BiDet and AutoBiDet to
quantization, pruning and efficient architecture design to
verify the benefit for other network compression methods.

4.1 Datasets and Implementation Details
We first introduce the datasets that we carried out experi-
ments on and data preprocessing techniques:

PASCAL VOC: The PASCAL VOC dataset contains nat-
ural images from 20 different classes. We trained our model
on the VOC 2007 and VOC 2012 trainval sets which consist
of around 16k images, and we evaluated our method on
VOC 2007 test set including about 5k images. Following
[7], we used the mean average precision (mAP) as the
evaluation criterion.

COCO: The COCO dataset consists of images from 80
different categories. We conducted experiments on the 2014
COCO object detection track. We trained our model with
the combination of 80k images from the training set and
35k images sampled from validation set (trainval35k [2]),
and tested our method on the remaining 5k images in the
validation set (minival [2]). Following the standard COCO
evaluation metric [27], we report the average precision (AP)
for IoU ∈ [0.5 : 0.05 : 0.95] denoted as mAP@[.5, .95]. We
also report average precision with IOU threshold 50% and
75% (AP50 and AP75) as well as average precision of small,
medium and large objects (APs, APm and APl).

We trained our BiDet and AutoBiDet with the SSD300
[31] and Faster R-CNN [43] detection framework whose

backbone were VGG16 [47] and ResNet-18 [12] respectively.
Following the implementation of binary neural networks in
[19], we remained the first and last layer in the detection
networks real-valued. We used the data augmentation tech-
niques in [31] and [43] when utilizing the SSD300 and Faster
R-CNN detection frameworks respectively. In most cases,
the backbone network was pre-trained on ImageNet [44]
in the task of image classification, whose implementation
details are shown in Appendix B.1. For training binarized
object detectors in both BiDet and AutoBiDet, we jointly
finetuned the backbone part and trained the detection part
for the object detection task. The batch size was assigned
to be 32 and the Adam optimizer [22] was applied. The
learning rate was set initially as 1e− 3 with decay to 1e− 4
and 1e − 5 at the 40th and 60th epoch out of 80 epochs for
PASCAL VOC, and started from 0.001 and multiplied 0.1 at
the 6th and 10th epoch out of 12 epochs for COCO.

For AutoBiDet, we iteratively trained the binarized de-
tector and the CES in each round. For the generator and the
discriminator in CES, we employed the similar architecture
as used in SN-GAN [35], which utilized the spectral nor-
malization to stabilize the training of GAN. The difference
was that we applied a convolutional layer as the input layer
to feed forward the high-level feature maps learned by the
backbone. Moreover, we increased the number of channels
and the batch size to further stabilize the GAN training as
suggested in [61] and [3]. Due to the limited GPU memory,
the generator reconstructed images whose side length were
1
2 and 1

4 of the original size for SSD300 and Faster R-CNN
respectively. Following [3], Adam optimizer [22] with a con-
stant learning rate of 2e− 4 and 5e− 5 was adopted for the
discriminator and generator respectively. Additionally, we
updated the discriminator for two steps when optimizing
the generator for one step during the training of GAN. For
the GAN training in each round, we kept optimizing GANs
until the loss of the generator converged.

Hyperparamters β and γ in BiDet were set as 10 and
0.2 respectively. In AutoBiDet, we discovered that automatic
information compression with the sine transformation func-
tion yielded the best result in all cases, where we assigned
δ3 = 10, θ3 = 5 and γ = 0.2 in most experiments.

4.2 Ablation Study
In this section, we analyze the effect of the information
bottleneck principle and the sparse object priors in BiDet
at first, and then show the effectiveness of the proposed
automatic information compression and the class-aware
sparse object priors in AutoBiDet by the ablation study.
For the experiments in this section, we adopted the SSD
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Table 2
Comparison of the parameter size, FLOPs and mAP (%) with the state-of-the-art binary neural networks in both one-stage and two-stage detection

frameworks on PASCAL VOC. BiDet (SC) and AutoBiDet (SC) mean the proposed methods with extra shortcut in the network architectures.

Framework Input Backbone Quantization W/A (bit) #Params MFLOPs mAP

SSD300 300 × 300

VGG16
- 32/32

100.28MB 31, 750 72.4

MobileNetV1 30.07MB 1, 556 68.0

VGG16

TWN 2/32 24.54MB 8, 531 67.8

DoReFa-Net 4/4 29.58MB 4, 661 69.2

BNN

1/1

22.06MB 1, 275 42.0

Xnor-Net 22.16MB 1, 279 50.2

BiDet 22.06MB 1, 275 52.4

AutoBiDet 22.06MB 1, 275 53.5
Bi-Real-Net

1/1

21.88MB 3, 215 63.8

BiDet (SC) 21.88MB 3, 215 66.0

AutoBiDet (SC) 21.88MB 3, 215 67.5

MobileNetV1
Xnor-Net

1/1

22.48MB 836 48.9

BiDet 22.48MB 836 51.2

AutoBiDet 22.48MB 836 52.0

Faster R-CNN 600 × 1000 ResNet-18

- 32/32 47.35MB 36, 013 74.5

TWN 2/32 3.83MB 9, 196 69.9

DoReFa-Net 4/4 6.73MB 4, 694 71.0

BNN

1/1

2.38MB 779 35.6

Xnor-Net 2.48MB 783 48.4

BiDet 2.38MB 779 50.0

AutoBiDet 2.38MB 779 50.7
Bi-Real-Net

1/1

2.39MB 781 58.2

BiDet (SC) 2.39MB 781 59.5

AutoBiDet (SC) 2.39MB 781 60.4

(a) (b)

(c) (d)

Figure 7. Ablation study w.r.t. hyperparameters β and γ, where the
variety of (a) mAP, (b) the mutual information between high-level feature
maps and the object detection I(F ;L,C) , (c) the number of false
positives and (d) the number of false negatives are demonstrated. (best
viewed in color).

detection framework with VGG16 backbone and evaluated
the presented method on the PASCAL VOC dataset.

4.2.1 Ablation Study for BiDet
Since the IB principle removes the redundant information
in binarized object detectors and the learned sparse object
priors concentrate the posteriors on informative prediction
with false positive alleviation, the detection accuracy is
enhanced significantly. To verify the effectiveness of the IB

Table 1
mAP (%) on PASCAL VOC w.r.t. different transformation functions in
automatic information compression (AIC) and different object priors.

W/o and w/ mean without and with respectively. C-SOP w/o 1
nk
c

demonstrates C-SOP that fails to offset the impact brought by the
number of groundtruth objects on predicted positives.

w/o AIC w/ AIC
- Linear Exponential Sine

SOP 66.0 66.5 66.2 66.8

C-SOP w/o 1
nk
c

66.4 67.1 66.6 67.2

C-SOP 66.6 67.3 66.9 67.5

principle and the learned sparse priors, we conducted the
ablation study to evaluate our BiDet w.r.t. the hyperparam-
eter β and γ in the objective function (7). We report the
mAP, the mutual information between high-level feature
maps and the object detection I(F ;L,C), the number of
false positives and the number of false negatives with varing
β and γ in Figure 7 (a), (b), (c) and (d) respectively.

By observing Figure 7 (a) and (b), we conclude that mAP
and I(F ;L,C) are positively correlated as they demon-
strate the detection performance and the amount of related
information respectively. Medium β provides the optimal
trade-off between the amount of total information and the
related information in the high-level feature maps, so that
the representational capacity of the binary object detectors
is fully utilized with redundancy removal. Small β fails to
fully leverage the representational power of the networks as
the amount of extracted information is limited excessively,
while large β enforces the networks to learn redundant
information which leads to significant performance degra-
dation. Meanwhile, medium γ offers optimal sparse object
priors that enforces the posteriors to concentrate on infor-
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Table 3
Comparison with the state-of-the-art binarized object detectors on COCO, where mAP@[.5, .95] (%), AP with different IOU threshold and AP for

objects in various sizes are demonstrated. BiDet (SC) and AutoBiDet (SC) mean the proposed methods with extra shortcut in the network
architectures.

Framework Input Backbone Quantization mAP@[.5, .95] AP50 AP75 (%) APs APm APl

SSD300 300 × 300 VGG16

- 23.2 41.2 23.4 5.3 23.2 39.6

TWN 16.9 33.0 15.8 5.0 16.9 27.2

DoReFa-Net 19.5 35.0 19.6 5.1 20.5 32.8

BNN 6.2 15.9 3.8 2.4 10.0 9.9

Xnor-Net 8.1 19.5 5.6 2.6 8.3 13.3

BiDet 9.8 22.5 7.2 3.1 10.8 16.1

AutoBiDet 10.6 23.0 7.9 3.1 11.3 17.1
Bi-Real-Net 11.2 26.0 8.3 3.1 12.0 18.3

BiDet (SC) 13.2 28.3 10.5 5.1 14.3 20.5

AutoBiDet (SC) 14.3 30.3 12.2 5.6 16.1 21.9

Faster R-CNN 600 × 1000 ResNet-18

- 26.0 44.8 27.2 10.0 28.9 39.7

TWN 19.7 35.3 19.7 5.1 20.7 33.3

DoReFa-Net 22.9 38.6 23.7 8.0 24.9 36.3

BNN 5.6 14.3 2.6 2.0 8.5 9.3

Xnor-Net 10.4 21.6 8.8 2.7 11.8 15.9

BiDet 12.1 24.8 10.1 4.1 13.5 17.7

AutoBiDet 12.6 25.9 10.7 4.4 14.0 18.3
Bi-Real-Net 14.4 29.0 13.4 3.7 15.4 24.1

BiDet (SC) 15.7 31.0 14.4 4.9 16.7 25.4

AutoBiDet (SC) 16.0 31.5 14.6 5.0 17.2 25.9

mative prediction. Small γ is not capable of sparsifying the
predicted objects, and large γ encourages the posteriors to
predict objects with excessive sparsity.

By comparing the variety of false positives and false neg-
atives w.r.t. β and γ, we know that medium β decreases false
positives most significantly and changing β does not varies
the number of false negatives notably. The redundancy
removal only alleviates the uninformative false positives
while remains the informative true positives unaffected.
Meanwhile, small γ fails to constrain the false positives
and large γ clearly increases the false negatives, which both
degrade the performance significantly.

β and γ both affect the mAP on PASCAL VOC by 1-2%
so that their influence on performance is similar. However, γ
influences the number of false positives and false negatives
more obviously as the sparse object priors directly control
the number of detected objects via (5).

4.2.2 Ablation Study for AutoBiDet
Since the automatic information compression adopts less
compression for images in low complexity and vice versa,
the network capacity is fully utilized and the redundancy
is completely removed for object detection. To investigate
the influence of transformation functions on the detection
performance, we implemented AutoBiDet with the linear,
exponential and sine transformation function, where Auto-
BiDet without automatic information compression was also
evaluated for reference. Meanwhile, C-SOP assigns sparser
object priors for classes with more predicted positives and
vice versa, the false positives can be eliminated effectively
without recall decrease. To verify the effectiveness of differ-
ent components in C-SOP, we experimented the AutoBiDet
via SOP, C-SOP without the offset weight 1

nk
c

and C-SOP
respectively. Table 1 shows the results.

Observing results across different columns, we know
that automatic information compression can enhance the

performance of the binarized object detectors since the
network capacity is fully utilized and the redundancy is
completely removed for images in various complexity. The
sine transformation function obtains the best performance
among all transformation functions in automatic informa-
tion compression, as the IB trade-off in the objective changes
obviously for images in high complexity and only varies
slightly for samples in low complexity. When the network
capacity is more sufficient, the IB-trade off needs to be more
sensitive to keep the optimal because the tangent in the
Pareto frontier shown in Figure 4 changes more significantly.

Comparing results in various rows, we conclude that C-
SOP improves the mAP as the object priors are required to
be sparser for classes with more predicted positives and vice
versa. The false positives are significantly removed without
recall degradation. We also implemented our AutoBiDet
via C-SOP without 1

nk
c

. Although directly applying different
sparsity to objects in various classes based on the number
of predicted positives can alleviated false positives, it fails
to offset the impact brought by the number of groundtruth
objects on the number of predicted positives. By adding the
offset weight 1

nk
c

to the object priors of different classes, we
obtain effective C-SOP and the mAP is further increased.

Other factors that influence the performance of the
proposed AutoBiDet include the hyperparameters in the
transformation function shown in (10). As demonstrated
in Table 1, the sine transformation function leads to the
best performance, so that we conducted the ablation study
by grid search for δ3 and θ3. The experimental results are
shown in Appendix B.3.

4.3 Comparison with the State-of-the-art Methods
In this section, we compare the proposed BiDet with the
state-of-the-art binary neural networks including BNN [5],
Xnor-Net [41] and Bi-Real-Net [32] in the task of object
detection on the PASCAL VOC and COCO datasets. For
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Figure 8. Qualitative results on PASCAL VOC. Images from the top to the bottom row show the groundtruth objects, the objects predicted by
Xnor-Net, BiDet and AutoBiDet respectively. The proposed BiDet removes the false positives significantly compared with Xnor-Net. Moreover, our
AutoBiDet eliminates the false positives more thoroughly for all classes and enhances the recall especially for small objects. The arrows in the
figures represent objects missed by BiDet while detected by AutoBiDet (best viewed in color).

Table 4
Extension of techniques in BiDet and AutoBiDet to different model compression methods. The mAP@[.5, .95] (%) in both one-stage and two-stage

detection frameworks on COCO is reported for comparison. Tech. in BiDet means the proposed techniques in BiDet including IB and SOP, and
Tech. in AutoBiDet represents the presented techniques in AutoBiDet containing automatic information compression and C-SOP.

Framework Input Backbone Compression mAP@[.5, .95]

SSD300 300 × 300 VGG16

- 23.2

DoReFa-Net 19.5

DoReFa-Net+Tech. in BiDet 20.0

DoReFa-Net+Tech. in AutoBiDet 20.4
SFP 18.2

SFP+Tech. in BiDet 19.1

SFP+Tech. in AutoBiDet 19.7

Faster R-CNN 600 × 1000 ResNet-18

- 26.0

DoReFa-Net 22.9

DoReFa-Net+Tech. in BiDet 23.4

DoReFa-Net+Tech. in AutoBiDet 23.6
SFP 22.9

SFP+Tech. in BiDet 23.9

SFP+Tech. in AutoBiDet 24.4

Light-Head R-CNN 800 × 1200 ShuffleNet-V2 x0.5
Light-Head R-CNN 22.5

Light-Head R-CNN+Tech. in BiDet 22.7

Light-Head R-CNN+Tech. in AutoBiDet 23.0

reference, we report the detection performance of the multi-
bit quantized networks containing DoReFa-Net [64] and
TWN [23] and the lightweight networks MobileNetV1 [17].

Results on PASCAL VOC: Table 2 illustrates the com-
parison of computation complexity, storage cost and the
mAP across different quantization methods and detection
frameworks. Our BiDet significantly accelerates the compu-
tation and saves the storage by 24.90× and 4.55× with the
SSD300 detector in VGG16 and 46.23× and 19.81× with
the Faster R-CNN detector in ResNet-18, and AutoBiDet
shares the same computational and storage cost with BiDet.
The efficiency is enhanced more notably in Faster R-CNN,
as there are multiple real-valued output layers of the head

networks in SSD300 for multi-scale feature extraction.
Compared with the state-of-the-art binary neural net-

works, the proposed BiDet improves the mAP of Xnor-
Net by 2.2% and 1.6% with SSD300 and Faster R-CNN
frameworks respectively while requiring fewer FLOPs and
parameters than Xnor-Net. AutoBiDet further enhances the
corresponding mAP by 1.1% and 0.7%. As demonstrated
in [32], adding extra shortcut between consecutive convolu-
tional layers can further enhance the representational power
of the binary neural networks, we also employed architec-
ture with additional skip connection to evaluate our BiDet
and AutoBiDet in networks with stronger capacity. Due to
the information redundancy, the performance of Bi-Real-Net
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with constrained network capacity is degraded significantly
compared with their full-precision counterparts in both one-
stage and two-stage detection frameworks. On the contrary,
our BiDet imposes the IB principle on learning binary
neural networks for object detection and fully utilizes the
network capacity with redundancy removal. As a result,
the proposed BiDet increases the mAP of Bi-Real-Net by
2.2% and 1.3% in SSD300 and Faster R-CNN detectors
respectively without additional computational and storage
cost. However, the sub-optimal IB trade-off in BiDet leads
to ineffective utilization of network capacity and insufficient
redundancy removal for input samples in various complex-
ity, and SOP in BiDet causes degraded recall and incomplete
false positive elimination due to the equal sparsity imposed
on objects in different classes. The proposed AutoBiDet
automatically learns the optimal IB trade-off with the class-
aware sparsity in the object priors, where the mAP is further
raised by 1.5% and 0.9% in SSD300 and Faster R-CNN
detectors respectively with additional shortcut.

Due to the different pipelines in one-stage and two-
stage detectors, the mAP gained from the proposed BiDet
and AutoBiDet with Faster R-CNN is less than SSD300.
As analyzed in [29], one-stage detectors face the severe
positive-negative class imbalance problem which two-stage
detectors are free of, so that one-stage detectors are usu-
ally more vulnerable to false positives. Therefore, one-stage
object detection framework obtains more benefits from the
proposed BiDet and AutoBiDet, which learns the sparse
object priors to concentrate the posteriors on informative
prediction with false positive elimination.

Moreover, our BiDet and AutoBiDet can be integrated
with other efficient networks in object detection for further
computation speedup and storage saving. We employed
our BiDet and AutoBiDet as a plug-and-play module in
SSD detector with the MobileNetV1 backbone, and saves
the computational and storage cost by 1.47× and 1.38×
respectively. Compared with the detectors that directly bina-
rize weights and activations in MobileNetV1 with Xnor-Net,
BiDet and AutoBiDet improve the mAP by a sizable margin,
which depicts the effectiveness of redundancy removal for
networks with extremely low capacity.

Results on COCO: The COCO dataset is much more
challenging than PASCAL VOC due to the high diversity
and large scale. Table 3 demonstrates mAP, AP with dif-
ferent IOU threshold and AP of objects in various sizes
for different methods. Compared with the state-of-the-art
binary neural networks Xnor-Net, our BiDet improves the
mAP by 1.7% and 1.7% in SSD300 and Faster R-CNN
detection framework respectively due to the information
redundancy removal. Moreover, the proposed BiDet also
enhances the binary one-stage and two-stage detectors with
extra shortcut by 2.0% and 1.3% on mAP. AutoBiDet further
enhances BiDet sizably across different architectures with
various detection frameworks. Comparing with the baseline
methods of network quantization, our method achieves
better performance in the AP with different IOU threshold
and AP for objects in different sizes, which demonstrates the
universality in different application settings.

Figure 8 shows the qualitative results of the groundtruth,
Xnor-Net, BiDet and AutoBiDet in the SSD300 detection
framework with VGG16. Compared with Xnor-Net, our

BiDet significantly alleviates false positives. Moreover, the
proposed AutoBiDet removes the false positives more thor-
oughly for all classes while enhances the recall especially
for small objects. To show the intuitive logic and technical
soundness of our method, we also provide the detection
results and the predicted foreground confidence score of
different images in Appendix A.

4.4 Extension on Other Compressed Object Detectors

Compressing detection models decreases the network ca-
pacity, where the information redundancy causes many false
positives especially for highly compressed object detectors.
In order to improve the performance of other compressed
models for object detection, the proposed techniques in-
cluding IB and SOP in BiDet and automatic information
compression and C-SOP in AutoBiDet can be utilized as the
off-the-shelf module to remove the redundancy for models
with different compression methods. We combined our tech-
niques with other compressed neural networks including
the quantized model DoReFa-Net, the pruned model SFP
[14] and the efficiently designed model Light-Head R-CNN
[25], and evaluated the detection performance on COCO.
For quantization and pruning methods, we applied the
SSD300 detection framework with the VGG16 architecture
and the Fast R-CNN detectors with the ResNet-18 archi-
tecture respectively. The ShuffleNet-V2 [34] was employed
as the backbone for the efficiently designed model Light-
Head R-CNN. The implementation details are demonstrated
in Appendix B.2.1.

Since the distribution of pixel values in high-level feature
maps are different in detectors with other compression
techniques, we assumed various prior distribution and pa-
rameterize the posteriors differently. For quantized mod-
els, we assumed the priors to be the 2n-class categorical
distribution with equal probability for each class, where n
was the bitwidth of high-level feature maps. The posteriors
were also designed as the 2n-class categorical distribution
that was parameterized by the backbone. For pruned and
efficiently designed models, the priors and posteriors were
both assigned to be the Gaussian distribution. The mean
and the variance of each pixel were assumed to be zero and
one respectively for the prior distribution, and those for the
posteriors were parameterized by the backbone.

Table 4 shows the results, and we provide more eval-
uation of our techniques on different compressed detec-
tion models in Appendix B.2.2. The proposed techniques
in BiDet and AutoBiDet both enhance the performance of
the vanilla compression methods, which demonstrates the
effectiveness of the information redundancy removal with
false positive elimination for compressed object detectors.
Compared with other model compression methods, the
performance increase in binarized object detectors is more
sizable due to the extremely low network capacity, which
benefits more from the redundancy removal.

5 CONCLUSION

In this paper, we have proposed a binarized neural network
learning method called BiDet for efficient object detection.
The presented BiDet removes the redundant information via
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information bottleneck principle to fully utilize the network
capacity, and enforces the posteriors to be concentrated on
informative prediction to eliminate false positives via sparse
object priors. We have also presented AutoBiDet that auto-
matically learns the optimal IB trade-off for input samples
in different complexity, and designed the class-aware sparse
object priors to completely eliminate the false positives
without recall degradation. Extensive experiments have de-
picted the superiority of BiDet and AutoBiDet in object
detection compared with the state-of-the-art binary neural
networks, and the presented techniques of our method have
been generalized to other compression techniques to further
enhance the vanilla model.
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