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Figure 1. Comparison of the detection results and the predicted foreground confidence score. Figures from the top row to the bottom row depict the
results obtained by Xnor-Net, BiDet and AutoBiDet. (a) means the predicted objects in the image. (b)-(e) illustrate the foreground confidence score
of predicted objects in the classes of bottles, cats, dogs and persons respectively.

APPENDIX A
COMPARISON OF DETECTION RESULTS AND PRE-
DICTED FOREGROUND CONFIDENCE SCORE

In order to provide the intuition of our BiDet and Auto-
BiDet, we demonstrate the detection results and the pre-
dicted foreground confidence score for all classes in Figure
1. Compared with Xnor-Net [16], our BiDet significantly
alleviates the false positives for all classes. However, the
bottle in the image is missed by BiDet. Our AutoBiDet
discovers the bottle with higher recall, and eliminates the
false positives more thoroughly.

APPENDIX B
MORE EXPERIMENTS FOR BIDET AND AUTOBIDET

In this section, we provide more experimental implementa-
tions and results for BiDet and AutoBiDet.

B.1 Backbone Pretraining on ImageNet

We pre-trained VGG16 [17], ResNet18 [5], MobileNetV1 [8]
and ShuffleNetV2 [14] as the backbones on ImageNet [2]
for image classification. ImageNet (ILSVRC12) contains ap-
proximately 1.2 million training and 50K validation images
from 1,000 categories. We scaled and biased all images into
the range [—1, 1]. For every image in the dataset, a 224 x 224
region was randomly cropped for training from the resized
image whose shorter side was 256. For inference, we em-
ployed the 224 x 224 center crop from images. Moreover,
we applied random horizontal flip at the probability of 0.5
[13, 16].

For all the backbones, we first trained their full-precision
versions which were adopted as the initialization for the bi-
narized models. For their binarized versions, all the models
were trained with the batchsize of 256 for 50 epochs. We
used the Adam [9] optimizer with 0 weight decay because
it converged faster and achieved higher accuracy for binary



networks [16]. The learning rate started from 0.01 and was
decayed twice by a factor of 0.1 each time at different epochs
for various models: The 25, and 35, epochs for VGG16,
the 20;,, and 30;;, epochs for ResNetl8 and the 16, and
244, epochs for both MobileNetV1 and ShuffleNetV2. We
achieved similar classification accuracy for these binarzed
models compared with the performance reported in their
original papers.

B.2 Results of Extension on Other Compressed Object
Detectors

Since the network capacity in compressed object detectors
is limited, removing information redundancy fully utilizes
the network capacity and eliminates the false positives. In
order to evaluate the generalization ability of the proposed
techniques in our BiDet on other model compression meth-
ods, we extended the IB principle and sparse object priors
in BiDet to quantization methods TWN [10] and DoReFa-
Net [19], pruning methods PFEC [11] and SFP [6], efficient
architecture MobileNet-V1 [8] and Light-Head R-CNN [12].

B.2.1 Implementation Details

Quantization: We applied TWN and DoReFa-Net for back-
bones with SSD300 and Faster R-CNN frameworks. Fol-
lowing the vanilla quantization settings, we quantized the
weights of the models in 2 bits while keeping the feature
map full-precision for TWN, and assigned the bitwidth of
both the weights and activations to be 4 bits for DoReFa-Net.
The quantized versions of the backbone models were also
pretrained on ImageNet, and we obtained the pretrained
weights from their official implementations provided pub-
licly online. The implementation details of training quan-
tized detectors with the SSD300 and Faster R-CNN frame-
works were the same as those in BiDet and AutoBiDet
except that the learning rate was decayed earlier: the 25,
and 40,5, epochs out of 60 epochs for PASCAL VOC and the
5¢n, and 8y, epochs out of 10 epochs for COCO.

Pruning: We adopted the structured pruning methods
PFEC and SFP for both SSD300 and Faster R-CNN with the
same backbone settings in BiDet and AutoBiDet. Following
the vanilla pruning methods, we pruned 30% of filters
in PFEC and 70% of filters in SFP. The pruned versions
of the backbones were also pretrained on ImageNet via
official implementations online. The implementation details
of training pruned detectors on PASCAL VOC and COCO
were the same as those in quantized models mentioned
above.

Efficiently designed models: We used MobileNet SSD and
Light-Head R-CNN whose backbones were MobileNetV1
and ShuffleNetV2 x0.5 respectively. The backbones were
also pretrained on ImageNet and we obtained the well-
trained models from the official PyTorch model zoo. The
implementation details were set as the same as those in
BiDet and AutoBiDet except that we decayed the learning
rate at the 50, and 75, epochs out of 100 epochs for
PASCAL VOC and the 8, and 12, epochs out of 15 epochs
for COCO.

B.2.2 Experimental Results

Tables 1-2 demonstrate the full results on PASCAL VOC
and COCO respectively. The design of prior and posterior
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Figure 2. Ablation study w.r.t. hyperparameters 63 and 43 in the sine
transformation function for AutoBiDet, where the mAP is illustrated. (best
viewed in color).

distributions is illustrated in the manuscript. The proposed
techniques in BiDet significantly enhance the vanilla com-
pressed object detectors in both datasets without additional
computational and storage cost.

B.3 Ablation Study w.r.t. the Hyperparameters in the
Transformation Function

Since the transformation functions in (10) of the manuscript
affect the performance of the proposed AutoBiDet, we
conducted the ablation study w.r.t. the hyperparameters in
the transformation functions to investigate the influence.
As demonstrated in Table 1 in the manuscript, the sine
transformation function leads to the best performance. We
only conducted the ablation study by grid search for 3 and
fs. The value of 03 was set as 5, 10 and 15, and that of 5 was
set as 2, 5, 8 and 10. Figure 2 show the mAP of our method
in different hyperparameter settings, where our choice in
most experiments that d3 = 10 and 03 = 5 was validated to
be the optimal.

B.4 The Number of TP/TN/FP/FN in AutoBiDet and Au-
toBiDet Substituting C-SOP with SOP

We have further conducted experiments to show the num-
ber of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) in Xnor-Net, AutoBiDet and
AutoBiDet substituting C-SOP with SOP (AutoBiDet-SOP)
to show the effectiveness of C-SOP. The SOP presented in
BiDet constrains the number of predicted positives in each
class equally. Since the false positives are more likely to
emerge in classes with more predicted positives, SOP causes
false negatives for classes with few predicted positives and
fails to eliminate false positives effectively for classes with
many predicted positives. C-SOP imposes sparser object
priors in classes with more predicted positives and vice
versa, so that the false positives can be alleviated effectively
without recall degradation. We reported the number of
TP/TN/FP/FN in Xnor-Net, AutoBiDet and AutoBiDet-
SOP on PASCAL VOC. Table 3 illustrates the results. The
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Table 1. Extension of presented techniques in BiDet on different compressed models. The parameter size, FLOPs and mAP (%) in both one-stage
and two-stage detection frameworks on PASCAL VOC are reported for comparison. Tech. in BiDet means the proposed techniques in BiDet
including IB and SOP.

Framework Input Backbone Compression #Params | MFLOPs | mAP
- 100.28MB 31,750 72.4
TWN 67.8
24.54MB 8,531
TWN+Tech. in BiDet ’ 68.6
DoReFa-Net 69.2
29.58MB 4,661
SSD300 300 x 300 VGG16 DoReFa-Net+Tech. in BiDet ’ 70.1
PFEC 73.8
93.22MB 20,610
PFEC+Tech. in BiDet ’ 75.3
SFP 73.0
59.64MB 13,246
SFP+Tech. in BiDet ’ 75.0
MobileNet SSD 300 x 300 MobileNetV1 o 30.07MB 1,556 68.0
Tech. in BiDet 69.7
- 47.35MB 36,013 74.5
TWN R 3.83MB 9,196 69.9
TWN+Tech. in BiDet 70.8
DoReFa-Net 71.0
6.73MB 4,694
Faster R-CNN 600 x 1000 ResNet-18 DoReFa-Net+Tech. in BiDet ’ 71.6
PFEC, . 76.89MB 30, 808 701
PFEC+Tech. in BiDet 70.8
SFI,) i 42.81MB 23,316 69.5
SFP+Tech. in BiDet 70.4
. Light-Head R-CNN 63.8
Light-Head R-CNN | 800 x 1200 | ShuffleNetV2 x0.5 47.85MB 5,650
1ghea * WHENERVE XY | Light-Head R-CNN+Tech. in BiDet ’ 64.6

Table 2. Extension of proposed techniques in BiDet on different model compression methods. The mAP@].5, .95] (%) in both one-stage and
two-stage detection frameworks on COCO is reported for comparison. Tech. in BiDet means the proposed techniques in BiDet including IB and

SOP.
Framework Input Backbone Compression mAP@]|.5, .95]
- 23.2
TWN 16.9
SSD300 300 x 300 VGG16 TWN+Tech. in BiDet 17.3
PFEC 18.7
PFEC+Tech. in BiDet 20.5
MobileNet SSD | 300 x 300 | MobileNetv1 . 193
Tech. in BiDet 19.7
- 26.0
TWN 16.9
Faster R-CNN | 600 x 1000 ResNet-18 TWN-+Tech. in BiDet 17.3
PFEC 23.4
PFEC+Tech. in BiDet 24.7

Table 3. The number of true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) in Xnor-Net, AutoBiDet
substituting C-SOP with SOP (AutoBiDet-SOP) and AutoBiDet.

TP FP N FN

Xnor-Net 10,773 | 375,598 | 3,937,484 | 231
AutoBiDet-SOP | 10,624 | 138,683 | 4,174,399 | 380
AutoBiDet 10,777 | 116,543 | 4,196,539 | 227

false positives are eliminated more completely in AutoBiDet
compared with AutoBiDet-SOP, which shows the better
precision in object detection. The recall of AutoBiDet is also
higher since the false negatives of AutoBiDet are also less
than that in AutoBiDet-SOP.

B.5 Visualization of IB trade-off and The Correspond-
ing Images

BiDet employs a fixed IB trade-off to balance the model
complexity and the model discriminality. Due to the con-
stant network capacity, the fixed information compression

results in ineffective utilization of network capacity for
images in low complexity and leads to insufficient redun-
dancy removal for samples in high complexity. AutoBiDet
adjusts the IB trade-off dynamically according to the sample
complexity, where more compression is adopted for images
in high complexity and vice versa. As a result, the network
capacity is fully utilized and the redundancy is completely
removed. In order to demonstrate our motivation intu-
itively, we show the images with different discriminator
probability that determines the IB trade-off in Figure 3.
The images containing more objects and more complex
background usually obtain lower discriminator probability,
which indicates more compression in the IB trade-off.

B.6 Ablation Study w.r.t. Different Strategies

To show the performance boost brought by IB and SOP in
BiDet and automatic information compression (AIC) and
C-SOP in AutoBiDet independently, we have evaluated Bi-
Real-Net [13], Bi-Real-Net+IB, Bi-Real-Net+SOP, BiDet (SC),
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Figure 3. Images with different discriminator probability that determines the IB trade-off. The images containing more objects and more complex
background usually obtain lower discriminator probability, which indicates more compression adopted in the IB trade-off.
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Table 4. The performance of Bi-Real-Net, Bi-Real-Net+IB, Bi-Real-Net+SOP, BiDet (SC), Bi-Real-Net+AIC, Bi-Real-Net+C-SOP and AutoBiDet
(SC) on PASCAL VOC.

Method Bi-Real-Net | +IB

+SOP  BiDet(SC)

+AutolB  +C-SOP  AutoBiDet(SC)

mAP (%) 63.8 64.2 645

66.0

66.4 66.6 67.5

Bi-Real-Net+AIC, Bi-Real-Net+C-SOP and AutoBiDet (SC).
The experiments were conducted on PASCAL VOC with
the VGG16 backbone and SSD framework. Table 4 shows
the results. IB and SOP independently enhance Bi-Real-Net
by 0.4% and 0.7% respectively, and they jointly increase
the mAP of Bi-Real-Net by 2.2%. Moreover, AIC and C-
SOP improve the mAP of Bi-Real-Net by 2.6% and 2.8%,
and strengthen the performance by 3.7% when integrating
them. Both IB and SOP in BiDet and both AIC and C-
SOP in AutoBiDet make observable contribution to binary
detectors.

APPENDIX C
THE STRONG CORRELATION BETWEEN DISCRIMI-
NATOR PROBABILITY AND IMAGE COMPLEXITY

The fixed IB trade-off in BiDet leads to ineffective utilization
of network capacity for images in low complexity and
results in insufficient redundancy removal for samples in
high complexity. On the contrary, the dynamic IB trade-
off in AutoBiDet achieves optimal for images in various
complexities. Since the image complexity cannot be directly
calculated during the training stage, generative adversarial
networks (GANSs) are utilized to evaluated the complexity
of input samples. The images in low complexity are better
recovered by the generator from the feature maps compared
with samples in high complexity, as the constant network
capacity of the backbone is more sufficient to extract in-
formation of the image for reconstruction. As a result, the
probability from the discriminator that the reconstructed
image is true can be utilized to evalute the complexity of
the input samples during training. In order to verify the
technical soundness of employing GANs for estimating the
complexity of input samples, we have provided theoretical

proof for the strong correlation between image complexity
and discriminator probability, shown the model statistics of
image complexity and discriminator probability and con-
ducted ablation studies that applied different methods to
evaluate sample complexity.

Theoretical proofs: In order to illustrate the correlation
between the input complexity and the discriminator prob-
ability, we provide the explanation to show that they are
equivalant. We first define the input complexity as below
following the widely adpoted definition [18], [15]:

C() = inf L(p(L. | ) M

where C(x) means the complexity of the image x, and w
represents the weights of the neural networks. I and c are
the location and classes of the objects in x, and f is the
learned feature maps for . L(p(l, ¢| f)) is the discriminative
loss for the prediction distribution p(l, ¢|f). The samples
that result in higher discriminative loss for the optimal
neural networks are more complex. In our method, we
employ the log likelihood for the discriminative loss:

L(p(l,clf)) = —logp(l =lz,c = cz|f) )
= —logp(l = lac|.f)p(c = cw|.f)

where I and ¢, are the groundtruth location and classes of
the image x. In (3), we factorize p(l, ¢|f) into p(l| f)p(c|f)
because the localization and classification of objects based
on feature maps are performed independently. Since we
focus on object detection instead of classification in [18],
we assign the Gaussian distribution for p(l|f) and the
multinomial distribution for p(c|f). Moreover, we consider
the complexity of individual samples instead of the whole
tasks in [18] so that we drop the expectation accross samples
of the discriminative loss.
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statistical results show D(G(f)) and ﬁ are strongly correlated, and the correlation coefficient is 0.80. The empirical study demonstrates that
high discriminator probability indicates low complexity of input images and vice versa.

The complexity cannot be directly calculated during
training. We can only obtain the complexity for each im-
age after acquiring the well-trained models as L(p(l, c|f))
achieves its lower bound for the optimal w. In order to
leveraging the optimal IB trade-off during the training pro-
cess, we propose the Complexity EStimator (CES) based on
GAN s to estimate the complexity for choosing the optimal
B in the IB objective.

The converged discriminator in our training process
is regarded as optimal. As proven in [4], we write the
solution to the optimal discriminator probability that the
reconstructed image is true:

pr(G(f))
POE) = G0 + o G
pr and p, are the distributions of the real and reconstructive
data respectively. According to the Markov chain in object
detection shown Figure 5 of the manuscript, the above
solution can be rewritten as:

D(G(f)) =

®)

p(z = G(f))

p(x =G(f)) +p(@ = G(f))
where & is the reconstructed image of . When f is given,
the generated image G(f) is deterministic. As a result,
p(x = G(f)) = p(x = &|f) holds and the distribution
p(& = G(f)) equals to the distribution of f conditioned
on x for all x. We further rewrite the optimal discriminator
probability as:

(4)

B p(x = z|f)

D(G(f)) = p(x =2|f) + >, p(flz)p(x) ©
B pa::-'ﬂf) x T =1
= b —alf) +p(p) "HPE=ED)

where p(f) is the constant priors of the binary high-level
feature maps and = oc;. ¥ means x is monotonically increas-
ing with y. On the other hand, the complexity can also be
rewritten as follows for the well-trained detector:

1
l=lz,c=cz|f)

C(x) = —logp(l =lz,c = cz|f) o<+ o (6)

Table 5. The performance of AutoBiDet that randomly assigns 3 in the
IB objective according to different distribution.

. Uniform Beta
Distribution
Ulo,1] Be(1,3) Be(2,2) Be(3,1)
mAP (%) 66.4 66.1 66.2 66.3

Table 6. The performance of AutoBiDet that substitutes GANs with
B-VAE to approximate the image complexity.

Bin B-VAE | 0.1 0.5 1 2 5
mAP (%) | 665 668 67.1 67.0 66.4

The feature maps reconstructing images with lower discrep-
ancy with real data contain richer semantic information,
which usually leads to better performance on detection for
the well-trained detectors [3], [1]. As a result, we draw the
conclusion that p(x = &|f) <t p(l = lp, ¢ = cz|f). Due
to the transitivity of «, we know that D(G(f)) o4 p(& =
z|f) x4 p(l =1z, c = co|f) x4 ﬁ

Since D(G(f)) o+ ﬁ, it is proven that high dis-
criminator probability indicates the low complexity of the
input image and vice versa. We adopted the linear func-
tion, exponential function and sine function to transform
discriminator probability to 5 in the IB objective to obtain
the optimal IB trade-off during the training process. The
experimental results show that the sine function achieves
the highest accuracy.

Statistics of the correlation between the discriminator
probability and the input complexity: In order to verify
the technical soundness of the Complexity EStimator (CES)
in AutoBiDet, we plot ﬁ and the probability output by the
well-trained discriminator D(G(f)) for each training image.
The experiments were conducted on PASCAL VOC with
the SSD framework and VGG16 backbone. Figure 4 depicts
the results, where D(G(f)) is strongly correlated with ﬁ
and the correlation coefficient was 0.80. The empirical study
demonstrates that high discriminator probability indicates
low complexity of input images and vice versa.

Comparison with other model variants or non-
parametric baselines for evaluating image complexity: To



illustrate the effectiveness of CES that predicts the image
complexity, we conducted ablation studies by designing
different assignment strategies for 3 in the IB trade-off.
The experiments were carried out on PASCAL VOC with
the SSD framework and VGG16 backbone. In our imple-
mentation, 5 = 10 + 5sin(s) where s was the score that
ranges in [0, 1]. For model variants, we assigned the value
of s randomly according to uniform distribution and Beta
distribution respectively, which was equivalent to choose
B randomly. Table 5 demonstrates the results. For non-
parametric baselines, we substituted GANs in AutoBiDet
with B-VAE [7], where the L, distance between the real
and reconstructed images were used to evaluate the image
complexity. We employed the normalized L, distance as s.
The results are reported in Table 6.

AutoBiDet with randomly selected 3 significantly de-
creases the performance in object detection because it fails
to consider the image complexity, which leads to the insuf-
ficient network capacity utilization and incomplete redun-
dancy removal for images in different complexities. Mean-
while, AutoBiDet with randomly selected 3 even performs
worse than AutoBiDet with fixed § (66.6%) because the un-
informative change of 3 causes the problem of convergence
in the IB objective. AutoBiDet that replaces GANs with f-
VAEs also underperforms the vanilla AutoBiDet, since the
L, distance in $-VAE is inconsistent with the complexity
(1). On the contrary, the probability of the well-trained
discriminator in the proposed CES can properly estimate
the image complexity.

In conclusion, leveraging GANSs to evaluate the image
complexity is technically sounded, and performs better than
other model variants such as random evaluation and 5-VAE
based evaluation.
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