
Deep Hashing with Active Pairwise Supervision

Ziwei Wang1,2,3, Quan Zheng1,2,3, Jiwen Lu1,2,3 ?, and Jie Zhou1,2,3,4

1 Department of Automation, Tsinghua University, China
2 State Key Lab of Intelligent Technologies and Systems, China

3 Beijing National Research Center for Information Science and Technology, China
4 Tsinghua Shenzhen International Graduate School, Tsinghua University, China

{wang-zw18,zhengq16}@mails.tsinghua.edu.cn,
{lujiwen,jzhou}@tsinghua.edu.cn

Abstract. In this paper, we propose a Deep Hashing method with Ac-
tive Pairwise Supervision(DH-APS). Conventional methods with passive
pairwise supervision obtain labeled data for training and require large
amount of annotations to reach their full potential, which are not feasi-
ble in realistic retrieval tasks. On the contrary, we actively select a small
quantity of informative samples for annotation to provide effective pair-
wise supervision so that discriminative hash codes can be obtained with
limited annotation budget. Specifically, we generalize the structural risk
minimization principle and obtain three criteria for the pairwise super-
vision acquisition: uncertainty, representativeness and diversity. Accord-
ingly, samples involved in the following training pairs should be labeled:
pairs with most uncertain similarity, pairs that minimize the discrepancy
between labeled and unlabeled data, and pairs which are most different
from the annotated data, so that the discriminality and generalization a-
bility of the learned hash codes are significantly strengthened. Moreover,
our DH-APS can also be employed as a plug-and-play module for semi-
supervised hashing methods to further enhance the performance. Exper-
iments demonstrate that the presented DH-APS achieves the accuracy
of supervised hashing methods with only 30% labeled training samples
and improves the semi-supervised binary codes by a sizable margin.

Keywords: Active Learning · Deep Hashing · Structural Risk Mini-
mization

1 Introduction

Large scale image search, which aims to retrieve images with similar content from
the database given a query image, has aroused extensive interest in computer
vision due to its wide application [17, 1, 21]. Although conventional methods
based on trees [49], nearest neighbor search [36] and quantization [20] have been
broadly employed in low-dimensional data retrieval, they are not feasible for
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Fig. 1. Deep hashing methods with the passive and active pairwise supervision. For the
former, supervised methods require exhaustive annotation with unbearable annotation
cost to reach the full potential, and semi-supervised methods randomly select a few
samples to label so that effective supervision is not provided. Our DH-APS selects
samples providing effective pairwise supervision to label so that discriminative and
generalizable binary codes are learned with limited annotation budget.

high-dimensional visual data due to the unbearable computational complexity
and storage cost. Hence, it is desirable to extract compact features for the high-
dimensional data in image search.

Recently, hashing-based approximating nearest neighbor search method have
been presented to learn binary codes [41, 12, 53, 10, 11, 29]. The storage and the
computational cost of retrieval is decreased significantly, as Hamming distance
instead of Euclidean distance between different hash codes is calculated when
comparing the similarity of various instances. The objective of hashing-based
methods is to learn a set of hash functions that maps each visual sample into a
compact binary feature vector, where conceptually similar samples are hashed
into similar binary codes. As limited bitwidth degrades the representational ca-
pacity of the representations, deep neural networks are applied to learn infor-
mative hash codes. Because unsupervised deep hashing methods suffer from low
discriminative power due to the lack of supervision, supervised deep hash models
boost the performance of the learned binary codes. However, exhaustive label-
ing for learning supervised hash codes require large amount of cost, which is
prohibited in realistic applications with limited annotation budget. Moreover,
semi-supervised deep hashing methods randomly select partial instances for an-
notation and fail to provide effective pairwise supervision for hash code learning.

In this paper, we propose a Deep Hashing method with Active Pairwise Su-
pervision (DH-APS) to learn effective binary codes for image search with limited
annotation budget. Unlike methods applying passive pairwise supervision which
require to label all training samples to reach the full potential, our method only
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annotates a few samples which provide effective pairwise supervision, so that dis-
criminative and generalizable binary codes are learned with limited annotation
cost. More specifically, we extend the structural risk minimization principle to
active deep hashing and obtain three annotation acquisition criteria: uncertainty,
representativeness and diversity. As the goal of hashing is similarity preservation,
our acquisition function is based on the pairwise relationship instead of individ-
ual samples that are usually considered in conventional active learning methods
[54, 48, 28]. Accordingly, we label samples involved in the following pairs: pairs
with highest uncertainty which is measured by Shannon Entropy [37], pairs which
minimize the maximum mean discrepancy (MMD) between the labeled set and
the unlabeled set, and pairs that have minimal similarity with the samples in
the labeled set. Moreover, our method can also be employed as a plug-and-
play module for semi-supervised deep hashing method to further enhance the
performance. Fig. 1 shows deep hashing methods with passive and active pair-
wise supervision. Extensive experiments on CIFAR-10 [23], NUS-WIDE [8] and
ImageNet [9] demonstrate that the proposed DH-APS obtains the competitive
performance with supervised binary codes with only 30% annotated training
samples and enhances the semi-supervised hash models by a large margin.

2 Related Work

Deep Hashing: Deep hashing has been widely studied in recent years due to
strong discriminative power and the high efficiency in large scale visual search.
Deep hashing obtains much better performance compared with hand-crafted and
shallow binary codes due to the data-dependent hash functions and the employ-
ment of deep architectures. Existing deep hashing methods can be divided into
three categories according to the type of supervision: unsupervised [12, 15, 42],
supervised [24, 29, 50] and semi-supervised [46, 51] methods. For the first cate-
gory, Liong et al. [12] utilized the deep neural networks with energy constraint
objectives to enhance the discriminative ability of hash codes. Ghasedi et al. [15]
applied the Generative Adversarial Networks (GANs) [16] to learn hash codes
through which the reconstructed images were enforced to have minimum discrep-
ancy with the real ones, so that the obtained binary representations acquired
informativeness and independency. For supervised methods, relation among d-
ifferent samples or explicit class labels are usually employed as supervision for
hash code learning. Liu et al. [29] enforced the similar samples to obtain closer
binary codes and punished semantically dissimilar samples whose hash codes
have short Hamming distance so that the learned binary representations could
precisely preserve the topology of the semantic space. Yang et al. [50] used the
category information to supervise the hash model, and the learned hash codes ex-
tracted the class-dependent information for image retrieval. For semi-supervised
methods, Zhang et al. [51] mined the semantic topology between labeled and un-
labeled samples and generated pseudo labels for unlabeled samples to leverage
the limited supervision. Zhang et al. [52] utilized the knowledge distillation to
train the student model for hash code generation, and the teacher network was
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assembled by multiple students. Nevertheless, exhaustive labeling is not feasible
in realistic application due to the large scale database and limited annotation
budget, and randomly annotating part of samples in hash code learning fails to
provide effective supervision.

Active Learning: Active learning aims to acquire better performance when
learning with fewer labeled training samples by actively annotating part of the
training data from a pool of unlabeled set. The criteria for active sample se-
lection can be divided into two types: informativeness and representativeness.
For the former category, the unlabeled data which the learner is most uncertain
about is selected to annotate as effective supervision can enhance discriminality
of the learner. The uncertainty can be defined as the entropy of the posterior
probabilities [22, 30, 39], distance to the classification boundaries [27, 45], mar-
gin between the largest and the second largest posterior probabilities [2] and
disagreement among independent classifiers [32, 44]. Gal et al. [14] utilized the
neural networks to estimate the task-specific uncertainty through multiple for-
ward passes in a data-driven manner. Beluch et al. [4] constructed a classifier
committee comprising five deep neural networks to obtain accurate estimation
of uncertainty disagreement. For the latter category, the samples that can repre-
sent the unlabeled pool are chosen to label as the learning over a representative
subset is competitive over the whole pool. The representativeness can be mea-
sured by clustering [33], knowledge propagation [31, 19], expected model change
[40, 13] and optimal experimental design which tries to query the representative
samples directly [7]. Sener et al. [38] selected the core-set for annotation by mini-
mizing the gap between an average loss over any given subset and the remaining
data points. Meanwhile, as combining informativeness and representativeness
can enhance the learner, a variety of hybrid strategies have been proposed for
specific tasks [34, 28]. Active hashing has also been proposed in Zhen et al. [54]
and Wang et al. [48], which only measured the uncertainty of individuals to s-
elect samples for annotation and failed to consider the representativeness and
diversity. Meanwhile, pairwise relationship should be considered in the acqui-
sition function because the goal of hashing is similarity preservation. However,
existing methods just calculate the acquisition function according to individu-
al samples, which leads to uninformative annotation. In this paper, we extend
active learning to deep hashing by considering pairwise relationship so that sam-
ples providing effective pairwise supervision are labeled to learn discriminative
and generalizable binary codes with limited annotation budget.

3 Approach

In this section, we first introduce the problem setting of deep hashing with active
pairwise supervision and then build the link between the acquisition function
for active annotation and the structural risk minimization principle. Finally, we
design the acquisition function by considering pairwise relationship for active
deep hashing.
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3.1 Deep Hashing with Active Pairwise Supervision

The training data set X consists of an active seed set L including a few labeled
samples {xL}, a large pool set U containing unlabeled data {xU} and a query set
Q comprising samples {xQ} that are selected from U for the Oracle to label. For
the initialization of active deep hashing, we randomly move only a few samples
from U to L, and Q is an empty set. Active deep hashing algorithms undergo
three iterative steps listed as follows: (1) training the hash model H with the
pairs sampled from L; (2) selecting samples that can provide the most effective
supervision from U based on the acquisition function s(H,U ,L) and adding them
to Q; (3) asking the Oracle to label the samples in Q and updating L, U and Q.

Let fk be the kth byte of the float feature for the input image, which is
obtained after the projection of the hash model H. The kth bit of the hash code
bk is obtained as follows:

bk = sgn(fk) (1)

where sgn(x) means the sign function which equals to zero if x is negative and
equals to one otherwise. Following the typical hinge loss in supervised hash
model training [29], we optimize the following objective to learn the optimal
binary codes:

J = y||ba − bb||22 + (1− y) max(m− ||ba − bb||22, 0)

s.t. ba, bb ∈ {+1,−1}d (2)

where ba and bb are the learned binary codes of xa and xb in the labeled set,
and sampling the labeled set constructs pairs for training. y is the label pro-
viding pairwise supervision, which equals to one if xa and xb are similar and
zero otherwise. m is a margin threshold parameter assigned to be positive. The
objective enforces the similar samples to be mapped into binary codes with short
distance and punishes dissimilar sample pairs whose hash codes are close when
their Hamming distance falls below m. As the sign function is non-differentiable
and searching for the optimal solution of binary codes is NP-hard, we relax the
optimization in (2) as the following problem:

J = y||fa − fb||22 + (1− y) max(m− ||fa − fb||22, 0)

+ γ(|||fa| − 1d||1 + |||fb| − 1d||1) (3)

where 1d is a all-one vector in d dimensions and | · | is the element-wise absolute
value operation. fa and fb are the float feature for ba and bb, and γ is an
hyperparameter to balance the term for similarity preservation and quantization
error minimization. In active deep hashing, pairs sampled from the labeled set
are utilized to train the hash model via (3). Moreover, active deep hashing can
also be integrated with semi-supervised methods [52] so that the performance of
the semi-supervised binary codes can be further enhanced due to the effective
supervision.
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3.2 Structural Risk Minimization for Active Hashing

The target for supervised hashing is to learn a hash model that preserves sim-
ilarity among all samples and generalizes well on unseen data. The structural
risk minimization (SRM) principle illustrates the objective via minimizing the
upper bound of the true risk under unknown data distribution, which holds for
dataset containing n samples with the probability at least 1− δ [3]:

E(J(z)) 6 Ê(J(z)) + 2Rn(Ω) +

√
ln 1/δ

n
(4)

where J(z) means the loss over the data z. E(J(z)) and Ê(J(z)) are the loss
expectation over true distribution of z and the distribution sampled from the
dataset, which are named true risk and empirical risk respectively. Rn(Ω) repre-
sents the Rademacher complexity of the loss function class Ω. The SRM principle
requires the data to be i.i.d. sampled from the original data distribution. How-
ever, the pairs sampled from available labeled instances in active hashing follow
different distribution compared with the whole training set as the chosen data is
usually more informative and representative. In order to extend the SRM prin-
ciple in active deep hashing, we reformulate the risk bound inequality with z
omitted and the detailed formulation is in the supplementary material:

E(J) 6 (E(J)− EM (J)) + ÊM (J) + Φ (5)

where EM (J) and ÊM (J) are the true risk and empirical risk of available labeled

data which includes the labeled set and query set. Φ = 2Rc(Ω) +
√

ln 1/δ
c means

the model complexity, and c is the size of the available labeled training pairs. In
active hashing, the data z consists of sample pairs x = (xa,xb) and their labels
y , we can rewrite the first term of (5) as follows:

E(J)− EM (J) =

∫
p(x|x ∈ X )

∫
J · p(y|x)dxdy −∫

p(x|x ∈M)

∫
J · p(y|x)dxdy

=

∫
g(x)p(x|x ∈ X )dx−

∫
g(x)p(x|x ∈M)dx (6)

where M means the labeled set L and the query set Q. p(x|x ∈ X ) and
p(x|x ∈ M) are the distribution of all training pairs and available labeled
pairs respectively, and p(y|x) is the probability of the pair x to be similar.
As g(x) =

∫
J · p(y|x)dy is bounded and measurable, a bounded and continuous

function ĝ(x) can guarantee the boundness of (6):

E(J)− EM (J) 6 sup
ĝ∈S

[

∫
g(x)p(X )dx−

∫
g(x)p(M)dx]

= MMDS(p(X ), p(M)) (7)

where we rewrite p(x|x ∈ X ) as p(X ) and p(x|x ∈ M) as p(M) for simplicity.
MMDS(p1, p2) represents the maximum mean discrepancy between distribution
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p1 and p2, which is measured by functions from class S. Finally, the SRM prin-
ciple can be directly employed in deep hashing with active pairwise supervision
and rewritten as follows:

E(J) 6 ÊM (J) + Φ+MMDS(p(X ), p(M)) (8)

Minimizing the upper bound in (8) can actively distinguish the sample pairs
that provide effective supervision.

3.3 Designing the Acquisition Function via Structural Risk
Minimization

We propose a batch mode active deep hashing algorithm by minimizing the
structural risk bound illustrated in (8) with pairwise relationship. The query set
is selected via the following optimization objectives:

min
Q,H

1

l + q

∑
x∈L∪Q

J + λ||H||2F +MMDS [p(X ), p(L ∪Q)]

where l and q are the size of the labeled set and the query set. ||H||F is the
Frobenius norm of the weight matrix in deep hash model, which demonstrates
the model complexity Φ [3] equally. In the above objective function, we denote
the first two terms as L1 which corresponds to the regularized empirical risk
for all labeled sample pairs. Minimizing L1 enforces the learned hash codes to
be discriminative to learn the topology of semantic space of images in visual
retrieval according to the supervision. The last term is notated as L2, which
relates to the generalization ability of the active deep hash model. Optimizing
L2 requires the distribution difference between labeled pairs and all pairs in
the training set to be small, which encourages the labeled set to capture the
representative information of the whole training set for enhanced generalization
ability.

According to the definition of J presented in (3), we should minimize the
worst-case regularized empirical risk as labels for sample pairs in the query set
is unknown. We can write the worst-case regularized empirical risk explicitly as
follows:

min
Q,H

L1 =
1

l + q

∑
x∈L

J + λ||H||2F +
1

l + q
sup
y

∑
x∈Q

J (9)

The label of pairs sampled from the query set with the worst-case risk is y =
−sign(m2 − ||fa − fb||

2
2). The first two terms in (9) train the hash model with

pairwise supervision. The last term measures the similarity uncertainty of pairs
sampled from the query set and contributes to the acquisition function, as hard
pairs leading to high training loss should acquire label information to provide
effective supervision.

The distribution difference between pairs sampled from the labeled and train-
ing sets is measured by their mean maximum discrepancy (MMD). The MMD
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objective ensures the labeled sample pairs are similar to the overall sample pairs
so that representative information of the training data is captured. The hash
model H yields two binary vectors to represent the sample pair, and the dis-
tance between binary code pairs is defined as follows:

d(H(x),H(t)) = inf
k
||H(x)− Tk(H(t))||F

= min(||H(xa)−H(ta)||F + ||H(xb)−H(tb)||F ,
||H(xb)−H(ta)||F + ||H(xa)−H(tb)||F ) (10)

where Tk and k ∈ {0, 1} is the permutation operator and indicator respective-
ly. T1(H(t)) means to permute the pair (H(ta),H(tb)) to (H(tb),H(ta)) when
calculating the Hamming distance with other pairs, and T0(H(t)) remains H(t)
unchanged. When large distance is caused by the sampling order for semantical-
ly similar pairs, we permute the instances in pairs to obtain the real semantic
distance. As proved in the supplementary materials, the defined distance is non-
negative, symmetric and follows the triangle inequality. According to the distance
definition in (10), we write the MMD objectives for active deep hashing in the
following [5, 18]:

inf
k1,k2

www 1

l + q

l+q∑
i=1

Tk1,i(H(x1,i))−
1

u− q

u−q∑
i=1

Tk2,i(H(x2,i))
www2

F

where x1,i ∈ L
⋃
Q is the ith pair sampled from the labeled and query sets,

and x2,i ∈ U \ Q is the ith pair sampled from the unlabeled set excluding
query instances. k1,i and k2,i is the ith element of the permutation indicator
k1 ∈ {0, 1}l+q and k2 ∈ {0, 1}u−q. Similar to [7], we transfer the MMD objective
for active deep hashing as follows during the optimization process:

min
α
L2 =

1

2
αTKUUα+

u− q
n

1lKLUα−
l + q

n
1uKUUα

s.t. α ∈ {0, 1}u, ||α||1 = q (11)

where the kth element of α is one if the kth pair sampled from the unlabeled set is
require to obtain annotation and otherwise equals to zero. 1d is an all one vector
in d dimensions.KUU illustrates the self-correlation matrix of pairs sampled from
the unlabeled set, and KLU demonstrates the correlation between pairs sampled
from the labeled set and the unlabeled pool. We denote the element in the ith
row and jth column of KUU and KLU as KUU,ij and KLU,ij and represent them
as KUU,ij = inf

k
H(xU,i)

TTk(H(xU,j)) and KLU,ij = inf
k
H(xL,i)

TTk(H(xU,j))

respectively, where xU,i and xL,i are the ith pair sampled from the unlabeled
and labeled sets. The MMD objective contributes to the acquisition function.
In (11), the first term aims to minimize the self-correlation of pairs sampled
from the query set in a batch so that the Oracle provides more information,
and the second term purposes to encourage pairs sampled from the query set
to be different from those sampled from the labeled set so that the provided
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supervision is not redundant. The above two terms increase the diversity of
information with redundancy elimination in batch mode deep active hashing.
The goal of the last term is to ensure the pairs sampled from the query set are
comprehensively similar to all unlabeled ones as they are representative for the
whole dataset.

Finally, we obtain different terms of the acquisition function in the proposed
DH-APS method with respect to uncertainty, representativeness and diversity:

Uncertainty : s1 =
1

l + q
sup
y

∑
Jα

Representativeness : s2 = − l + q

n
1uKUUα

Diversity : s3 =
1

2
αTKUUα+

u− q
n

1lKLUα

where the ith element of J ∈ R1×u represents the training loss of the ith pair
sampled from the unlabeled set. As searching for the optimal α is an NP-hard
problem, we employ the alternating direction method of multipliers (ADMM)
algorithm [6] to solve the following problem in active deep hashing:

min
α
s = s1 + s2 + s3 (12)

Because α indicates the selection of pairs instead of instances, we rank all un-
labeled samples based on the number of selected pairs containing them in a
descent order. Then we add the top q instances to the query set before the anno-
tation process. Labeling the selected samples provides effective supervision and
enforces the hash model to learn discriminative and generalizable binary codes.

4 Experiments

In this section, we evaluated our method on three datasets for image retrieval:
CIFAR-10, NUS-WIDE and ImageNet. We first introduce the implementation
details, and then investigate the influence of the acquisition function by ablation
study. Meanwhile, we compare the proposed DH-APS with the state-of-the-art
hash codes to show the benefits of effective supervision from actively selected
samples. Finally, we visualize the query set to demonstrate our intuition.

4.1 Datasets and Implementation Details

We first introduce the datasets our DH-APS carried out experiments on and
corresponding data preprocessing techniques:

CIFAR-10: The CIFAR-10 dataset consists of 60, 000 images of size 32×32
and is categorized into 10 classes. We randomly selected 1,000 images (100 images
per class) as the query set, the rest 59,000 images as the training set and the
retrieval database. We padded 4 pixels on each side of the image and cropped it
into the size of 32× 32 randomly with normalization.
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Table 1. Effect of different components in the acquisition function and the ratio of
labeled samples on mean average precision (%), where Unc., Rep. and Div. represent
uncertainty, representativeness and diversity respectively. The proposed DH-APS was
evaluated with the 32-bit hash codes on CIFAR-10.

Unc. Rep. Div.
Ratio of labeled samples

0% 1% 5% 10% 15% 20% 30% 50% 80% 100%

√
√ √

18.1 32.6 41.0 49.5 54.2 57.3 63.5 64.7 65.4 66.1
× 18.1 31.8 39.5 47.6 51.9 55.9 62.9 64.1 65.1 66.1

×
√

18.1 31.5 38.9 48.0 52.1 55.2 61.8 64.3 65.0 66.1
× 18.1 28.7 36.6 46.0 49.3 53.1 59.5 63.8 64.8 66.1

×

√ √
18.1 29.0 36.4 44.3 49.2 52.5 58.8 63.6 64.7 66.1

× 18.1 26.8 34.9 41.0 45.5 49.6 56.0 62.4 64.2 66.1

×
√

18.1 26.4 35.4 41.2 45.3 48.9 54.7 62.3 64.4 66.1
× 18.1 25.5 33.7 38.1 44.6 48.1 54.3 62.0 63.9 66.1

NUS-WIDE: The NUS-WIDE dataset contains 269, 648 images collected
from Flicker with 81 manually annotated concepts. Two images are regarded as
positive if they share at least one positive label and are negative otherwise. Only
the 21 most frequent concepts were used, resulting in a total of 166, 047 images.
We randomly chose 2,100 images (100 images per class) as the query set and
regarded the rest as the training set and the retrieval database. The images were
warped to 64× 64 before feeding forward to the networks and normalized.

ImageNet-100: ImageNet (ILSVRC12) contains approximately 1.2 million
training and 50K validation images from 1,000 categories. ImageNet is much
more challenging because of its large scale and high diversity. Images of 100
randomly sampled categories were selected to construct the training set, and
we applied all images in the selected classes from the validation set as queries.
Followed by data augmentation of bias subtraction applied in CIFAR-10, a 224×
224 region was randomly cropped for training from the resized image whose
shorter side was 256. For inference, we employed the 224× 224 center crop.

We trained our DH-APS with VGG16-like [43] architectures, where the soft-
max layer in the original VGG16 was replaced with a fully-connected layer to
obtain the binary codes. In each iteration, we trained the hash model for 60
epochs, selected the samples for annotation and labeled the query samples by
an Oracle until reaching the annotation cost limit. For hash model training, the
SGD optimizer with the momentum of 0.9 and weight decay of 0 was leveraged.
The learning rate started from 0.01 and changed to 1e−3 and 1e−4 at the 20th
and 40th epoch. For sample selection, we randomly sampled ηn2

100 pairs from the
unlabeled instances to construct the unlabeled pairs and then actively selected
ηn2

1000 pairs by solving (12) via ADMM, where η is the assigned ratio of labeled
data representing the annotation budget and n is the size of the dataset. We
ranked all unlabeled samples based on the number of selected pairs containing
them and added the top ηn

1000 samples to the query set.

4.2 Ablation Study

As DH-APS selects samples that provide effective pairwise supervision for anno-
tation, the learned binary codes are enhanced significantly with discriminative
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information and strong generalization ability. To verify the importance of the
proposed acquisition function and supervision, we implemented our DH-APS
with different annotation budget and utilization of various terms in the acquisi-
tion function. Because the uncertainty, representativeness and diversity terms in
the acquisition function contribute differently to sample selection, we conduct-
ed orthogonal ablation study w.r.t. them. We adopted VGG16-like architecture
as the deep hash model, which was evaluated on the CIFAR-10 dataset. Mean
Average Precision (MAP) in 32-bit binary codes was reported in Table 1. Based
on the results, we observe the influence of different component in the proposed
acquisition function and the ratio of labeled samples.

– Comparing the accuracy obtained with different ratio of labeled samples, we
know that annotating a small quantity of informative samples improves the
MAP of retrieval very significantly. The effective pairwise supervision benefits
the hash code learning obviously especially when extremely little annotation
budget is accessible for training. Although the ratio of labeled samples is
positively related to the performance, the margin of the MAP enhancement
caused by the extra annotation declines for the large labeled set, which means
most samples fail to provide effective supervision and do not contribute to deep
hash code learning. Our DH-APS achieves competitive accuracy compared
with the fully supervised deep hashing methods by utilizing only 30% labeled
data for training, which significantly saves the labeling cost.

– All components in the acquisition function including uncertainty, represen-
tativeness and diversity improve the MAP at various degrees, which implies
the DH-APS method are universally suitable for various deep hash model.
The uncertainty enhances the binary codes most significantly, because hard
pairs with the most uncertain similarity provide large gradients in the back-
propagation so that the deep hash model is supervised effectively. Because the
representative samples capture the global topology of the semantic space and
the diverse samples eliminate information redundancy in supervision, combin-
ing all components in the acquisition function further increases the MAP.

4.3 Comparison with the State-of-the-art Methods

In this section, we compare the performance of our DH-APS with existing unsu-
pervised methods DH [12] and GraphBit [11], semi-supervised methods SSH [47],
SSDH [51] and PTS3H [52] and supervised methods DSH [29], DPSH [26] and
SDSH [35] in image retrieval tasks on the CIFAR-10, NUS-WIDE and ImageNet
datasets, and the applied backbone of the above methods were all VGG16 in our
comparison. Table 2 illustrates the MAP of different methods in various code
lengths, where SSH† means that we reimplemented the method with deep hash
models. DH-APS (1%, 10%, 30%) represents the proposed active deep hashing
method with corresponding ratio of labeled samples. We also implemented our
DH-APS with the same annotation setting as semi-supervised methods [51, 52,
47] which is denoted as DH-APS (*). For DH-APS (*), we randomly selected
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Table 2. Comparison of mean average precision (%)with state-of-the-art unsupervised,
semi-supervised and supervised deep binary descriptors under varying code lengths.
12b, 24b, 32b and 48b means the hash codes in 12, 24, 36 and 48 bits. SSH† means
that we integrate the method with deep hash models. DH-APS (1%, 10%, 30%) s-
tands for our method with different ratio of labeled samples, and DH-APS (∗) means
that we adopt the same annotation setting as semi-supervised hashing methods. DH-
APS+PTS3H represents the presented DH-APS combined with PTS3H.

Methods
CIFAR-10 NUS-WIDE ImageNet-100

12b 24b 32b 48b 12b 24b 32b 48b 12b 24b 32b 48b
Unsupervised Hashing

DH 22.3 23.0 23.6 23.7 22.5 23.1 23.4 23.3 12.5 13.8 14.0 14.2
GraphBit 26.9 27.2 27.0 27.3 26.7 27.0 27.2 27.4 12.9 14.5 14.7 15.1

Semi-supervised Hashing

SSH† 35.3 37.0 38.1 38.2 30.0 31.6 35.8 32.6 19.9 21.0 21.6 23.1
SSDH 80.1 81.3 81.2 81.4 77.3 77.9 77.8 77.8 − − − −
PTS3H 79.8 82.8 83.5 84.3 75.2 77.4 78.3 78.9 66.1 67.5 68.0 69.7

Supervised Hashing
DSH 61.6 65.6 66.1 67.3 54.5 55.3 55.9 56.0 47.9 50.3 50.7 51.4
DPSH 71.3 72.7 74.4 75.7 79.4 82.2 83.8 85.1 − − − −
SDSH 93.9 93.9 93.9 93.4 − 81.7 82.1 82.1 − − − −

Active Hashing
DH-APS (1%) 30.5 31.9 32.6 32.8 30.1 30.6 31.2 31.8 17.9 18.1 19.5 19.6
DH-APS (∗) 44.9 46.4 47.8 47.7 36.0 36.8 38.5 38.8 24.9 25.1 26.3 26.8

DH-APS (10%) 47.2 48.6 49.5 49.7 38.1 39.6 40.2 40.7 26.1 27.3 27.8 28.0
DH-APS (30%) 61.8 62.4 63.5 64.3 51.8 53.0 53.5 54.3 43.5 43.6 45.2 46.9

DH-APS+PTS3H 82.1 85.3 86.7 86.9 79.1 81.1 82.2 82.3 68.9 70.0 70.3 71.8

500, 500 and 100 images of each class on CIFAR-10, NUS-WIDE and ImageNet-
100 for labeling respectively. DH-APS+PTS3H represent DH-APS deployed as
a plug-and-play module in PTS3H for labeled instance sampling. Table 2 illus-
trates the MAP of different hash methods. Fig. 2 depicts the precision within
Hamming 2 for 12, 24, 32 and 48-bit hash codes and w.r.t. top-k in 48-bit binary
representations on the three datasets. The performance of DH, GraphBit, SSH†,
PTS3H and DSH was obtained by rerunning the codes and the results of other
baselines were copied from the referenced paper.

The results indicate DH-APS achieves the competitive accuracy with the
supervised method DSH with only 30% labeled samples on both the CIFAR-10
and NUS-WIDE datasets, and the underperformance on ImageNet-100 is caused
by the rich information of the dataset where the global structure of the semantic
space is difficult to represent by few samples. Meanwhile, DH-APS enhances
the semi-supervised method PTS3H significantly due to the effective supervision
from actively selected samples. Compared with unsupervised methods, DH-APS
outperforms GraphBit across all datasets with only 1% data labeled. With better
discriminality and generalization ability, DH-APS mines the global structure of
the semantic space with few labeled samples.

4.4 Visualization

In order to demonstrate the intuition of the proposed method, we provide the
visualization of DH-APS. We trained an active deep hash model with the LeNet5
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Fig. 2. The performance on image retrieval of different binary codes.

architecture on the MNIST dataset [25] through our method. The MNIST dataset
consists of 60, 000 digit images with the size 28×28, which are divided into 10 cat-
egories. We scaled and biased all images into the range [−0.5, 0.5]. We randomly
sampled 2, 000 images with 200 samples for each class to construct the training
set and selected 10 images to annotate according to the acquisition function on-
ly consisting of uncertainty, representativeness and diversity terms respectively.
Figure 3 (a) shows the 2-d projection of the samples via the t-SNE method,
where dots in different colors represent various digits and dots with different
borders stand for the selected instances based on various acquisition function.
Fig. 3 (b) demonstrate the selected images according to acquisition function
composed by uncertainty, representativeness and diversity terms respectively.

When only applying the uncertainty term, the ambiguous samples which
remain far from the original distribution are selected. As these hard instances
provide large gradient for the hash model learning, the discriminality of the
learned hash codes is enhanced. Selecting samples for annotation based on the
representativeness term encourages samples near the center of different classes
to be labeled. The representative instances capture the semantic information
of the whole dataset instead of local structure, so that the learned hash model
can be generalized to image retrieval in large scale. When the diversity term
is employed as the acquisition function, samples in different classes are chosen
evenly for annotation. The diverse instances offer effective supervision without
redundancy to fully utilize the representation capacity of the binary codes.

5 Conclusion

In this paper, we have proposed an deep hashing method with active pairwise
supervision called DH-APS for large scale image search. The proposed DH-APS
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Fig. 3. Visualization of DH-APS. (a) The 2-d projection of the samples via the t-
SNE method, where dots in different colors represent various digits. Dots with square,
triangle and rhombus borders mean the selected instances based on acquisition function
only containing uncertainty, representativeness and diversity terms respectively. (b)
Selected images according to acquisition function only composed of uncertainty (U),
representativeness (R) and diversity (D) respectively (best viewed in color).

actively selects a small quantity of samples for annotation via considering pair-
wise relationship and generalizing the structural risk minimization principle, so
that uncertain, representative and diverse samples are labeled. The effective su-
pervision significantly enhances the discriminality and generalization ability of
the learned hash codes with limited annotation cost. Extensive experiments have
demonstrated the effectiveness of the proposed approach.
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