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Abstract

In this paper, we propose a Shapley value based method
to evaluate operation contribution (Shapley-NAS) for neu-
ral architecture search. Differentiable architecture search
(DARTS) acquires the optimal architectures by optimizing
the architecture parameters with gradient descent, which
significantly reduces the search cost. However, the mag-
nitude of architecture parameters updated by gradient de-
scent fails to reveal the actual operation importance to the
task performance and therefore harms the effectiveness of
obtained architectures. By contrast, we propose to evaluate
the direct influence of operations on validation accuracy.
To deal with the complex relationships between supernet
components, we leverage Shapley value to quantify their
marginal contributions by considering all possible combi-
nations. Specifically, we iteratively optimize the supernet
weights and update the architecture parameters by eval-
uating operation contributions via Shapley value, so that
the optimal architectures are derived by selecting the oper-
ations that contribute significantly to the tasks. Since the
exact computation of Shapley value is NP-hard, the Monte-
Carlo sampling based algorithm with early truncation is
employed for efficient approximation, and the momentum
update mechanism is adopted to alleviate fluctuation of
the sampling process. Extensive experiments on various
datasets and various search spaces show that our Shapley-
NAS outperforms the state-of-the-art methods by a consid-
erable margin with light search cost. The code is available
at https://github.com/Euphoria16/Shapley-NAS.git.

1. Introduction
Neural architecture search (NAS) has attracted great in-

terest in deep learning since it discovers the optimal ar-
chitecture from a large search space of network compo-
nents according to task performance and hardware config-
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urations. Pioneering works applied reinforcement learn-
ing [48], evolutionary algorithms [30, 38], and Bayesian
optimization [22] for the architecture search, but the large
computational overhead prohibits practical deployment of
NAS algorithms. Therefore, it is desirable to design highly
efficient search strategies without performance degradation.

To reduce the search cost of architecture search, sev-
eral efficient search strategies have been presented includ-
ing one-shot NAS [29], network transformation [3], and
architecture optimization [26]. Among these approaches,
one-shot NAS preserves the optimal sub-networks from the
over-parameterized supernet with weight sharing, which
prevents the time-consuming exhaustive training for model
evaluation. In particular, DARTS [23] converted the dis-
crete operation selection into continuous mixing weights
learning and iteratively optimized the architecture param-
eters and supernet weights by gradient descent with signif-
icantly reduced search cost. However, the magnitude of ar-
chitecture parameters in DARTS cannot reflect the actual
operation importance in general [36, 42, 47]. That is, the
operation with the largest parameter magnitude does not
necessarily result in the highest validation accuracy, which
degrades the performance of derived architectures.

In this paper, we present a Shapley-NAS method to eval-
uate the operation contribution via the Shapley value of su-
pernet components for neural architecture search. Instead
of relying on the magnitude of architecture parameters up-
dated by gradient descent, we consider their practical influ-
ences on task performance and propose to directly evalu-
ate their contributions to the validation accuracy. Moreover,
we observe that the operations in the supernet are related to
each other: combinations of operations might have different
joint influences on performance compared with their sepa-
rate ones. In order to deal with such complex relationships,
we leverage Shapley value [31,32], an important solution to
attribute contributions to players in cooperative game the-
ory. Fig. 1 shows the differences between our Shapley-NAS
and existing DARTS methods. Shapley value directly mea-
sures the contributions of operations according to the vali-
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Figure 1. The comparison between DARTS and our Shapley-NAS. (a) DARTS constructs a weight-sharing supernet that consists of all
candidate operations. The architecture parameters are optimized by gradient descent, which fails to reflect the importance of operations
[36, 42, 47]. (b) The proposed Shapley-NAS method directly evaluates the marginal contribution of operations to the task performance,
according to the validation accuracy difference of all possible operation subsets and their counterparts without the given operation.

dation accuracy difference. Meanwhile, it considers all pos-
sible combinations and quantifies the average marginal con-
tribution to handle complex relationships between individ-
ual elements. Benefiting from these, Shapley value is effec-
tive for obtaining operation importance that is highly cor-
related with task performance. Since computing the exact
Shapley value is NP-hard, we employ the Monte-Carlo sam-
pling with early truncation for operation permutation set
sampling to approximate it efficiently. Finally, we optimize
the supernet weights and update the architecture parame-
ters iteratively, where the momentum update mechanism
is adopted to alleviate the fluctuation caused by the sam-
pling process. We empirically demonstrate that the obtained
Shapley value has a higher correlation with task perfor-
mance compared with DARTS. We conducted extensive ex-
periments on different datasets across various search spaces,
where our Shapley-NAS outperforms the state-of-the-art ar-
chitecture search methods. We achieve an error rate of
2.43% on CIFAR-10 [19] on the search space of DARTS
and obtain the top-1 accuracy of 23.9% on ImageNet [9] un-
der the mobile setting. Furthermore, our Shapley-NAS ac-
quires the optimal architectures on CIFAR-10 and CIFAR-
100 and near-optimal solutions on ImageNet-16-120 of the
NAS-Bench-201 benchmark [11].

2. Related Work

Differentiable NAS: Differentiable architecture search
(DARTS) was first proposed by Liu et al. [23] with the goal
of reducing the heavy search cost in NAS. They apply a
continuous relaxation to the graphical architecture represen-
tation, thus enabling efficient gradient descent to solve the
bi-level optimization objective for architecture search. PC-
DARTS [40] further proposed to only search the partially-
connected operations by leveraging the redundancy in net-

work space to further reduce the memory overhead. De-
spite the computation efficiency of DARTS, several works
have challenged its generalizability [8,20,39,42] and stabil-
ity [6,7,36,43,44]. In order to reduce the bias of DARTS for
operation selection, SNAS [39] and GDAS [10] introduced
stochasticity into the supernet training and adopted the dif-
ferentiable Gumbel-Softmax trick [17] for gradient estima-
tion. SGAS [20] greedily chose and pruned the candidate
operations based on edge importance, selection certainty,
and selection stability to alleviate the performance gap be-
tween the search and evaluation phase. RobustDARTS [43]
found that the stability of DARTS is highly correlated with
dominant eigenvalue of the Hessian of validation loss with
respect to the architecture parameters. Therefore, they per-
formed early stop regularization according to the largest
eigenvalue to avoid poor generation. SmoothDARTS [6]
further smoothed the loss landscape via perturbation-based
regularization. However, recent studies [36, 42, 47] have
demonstrated the magnitude of architecture parameters in
the DARTS framework fails to reveal the actual operation
importance, which greatly degrades the performance of ar-
chitectures derived from the search phase.

Shapley value: Shapley value has been well studied
in the cooperative game theory as a fair contribution dis-
tribution method [31, 32]. Recently, Shapley value has
been adopted in explainable machine learning to discover
the importance of different elements, which can be di-
vided into three groups: explaining feature importance
[1, 24, 25, 28, 33], model component importance [2, 13, 37],
and data importance [18, 41]. For the first regard, Ancona
et al. [1] conducted an axiomatic comparison to show the
advantage of the Shapley value over the attribution methods
for feature map explanation in deep networks. SHAP [25]
presented the additive feature attribution based on the Shap-
ley value of features to acquire higher consistency with hu-



man intuition. For model component importance explana-
tion, ShapNets [37] leveraged the Shapley transform that
transforms the input into Shapley representations so that
the network prediction can be explained during the forward
pass. Neuron Shapley [13] identified the most important
filters in neural networks and demonstrated potential appli-
cations to improve the accuracy, fairness, and robustness of
the model prediction. Moreover, Ghorbani et al. [12] quan-
tified the contribution of individual data points which effec-
tively identified the outliers and corrupted data. Since com-
puting the exact Shapley value is NP-hard, Monte-Carlo
sampling [12,13], perturbation-based approximation [1], in-
fluence function, and many others were presented for ef-
ficient estimation of Shapley value. In this paper, we ex-
tend the Shapley value to operation importance evaluation
in the DARTS framework, so that the optimal architectures
are derived by selecting the operations that contribute sig-
nificantly to the performance.

3. Approach

In this section, we first briefly introduce differentiable
architecture search (DARTS), which suffers from degener-
ate architectures due to the mismatch between the architec-
ture parameters and operation importance. Then we pro-
pose to directly evaluate the influence of operations on the
task performance and introduce Shapley value to quantify
their relative contributions at the presence of complex re-
lationships between different operations. We also present
the Monte-Carlo sampling algorithm with early truncation
for efficient approximation of Shapley value. Finally, we
propose Shapley-based architecture search (Shapley-NAS)
which can effectively identify the optimal architectures with
the most important operations from the large search space.

3.1. Preliminaries

The differentiable architecture search (DARTS) is one
of the most popular solutions to identify effective architec-
tures, as it largely reduces the search cost by relaxing the
architecture search to continuous mixture weights learning.
Following prior works [22, 30, 49], DARTS searches for
the best cell structure and constructs the supernet by rep-
etitions of normal and reduction cells. Each cell is repre-
sented by a directed acyclic graph (DAG) with N nodes
and E edges, where each node x(i) defines a latent repre-
sentation and each edge (i, j) is associated with an opera-
tion o(i,j). The core idea of DARTS is to apply continuous
relaxation to the search space to perform the gradient-based
search. Concretely, the intermediate node is computed as a
softmax mixture of candidate operations:

ō(i,j)(x(i)) =
∑
o∈O

exp(α(i,j)
o )∑

o′∈O exp(α(i,j)

o′
)
o(x(i)), (1)

where O is the set of all candidate operations and α
(i,j)
o

denotes the mixing weight of operation o(i,j) to construct
the supernet. With such relaxation, the architecture search
can be performed by jointly optimizing the network weight
w and architecture parameters α in a differentiable manner
with the following bi-level objective:

min
α

Lval(w
∗, α) s.t. w∗ = argmin

w
Ltrain(w,α).

(2)
During the search stage, the weight-sharing supernet

containing all these candidate operations is optimized by
gradient descent. At the end of the search stage, the final
architecture is derived by selecting the operation with the
largest architecture parameter α on every edge across all
operation choices, o(i,j) = argmaxo∈O α

(i,j)
o .

3.2. Operation Importance Evaluation

The magnitude-based architecture selection process in
DARTS relies on an important assumption that the mag-
nitude of architecture parameters represents the operation
importance. In other words, it supposes that operations
with low magnitude of α result in weak feature represen-
tations and thus have little contribution to the network per-
formance. However, recent studies [36, 42, 47] have shown
that the value of architecture parameters does not necessar-
ily reflect the actual operation contribution. In many cases,
the operation with the largest α does not result in the highest
validation accuracy. Therefore, selecting the best operations
based on values of α may lead to significant performance
degradation at the evaluation phase.

To solve this problem, we propose to perform the ar-
chitecture search by identifying operations that contribute
the most to the validation accuracy. [36] performs a similar
evaluation of operation contribution by removing the target
operation from the supernet while keeping all other opera-
tions to obtain the performance drop. However, we observe
that the operations in the supernet are not independent of
each other. To demonstrate the underlying relationships be-
tween operations on different edges, we remove only one
operation separately on the 4th edge and the 5th edge from
the supernet pretrained on the NAS-Bench-201 space, and
re-evaluate the supernet accuracy. As shown in Fig. 2a, re-
moving the skip connect operation on the 4th edge and the
conv 3x3 on the 5th edge leads to the most dramatic perfor-
mance drop. However, we find the impacts of combinations
of the two edges differ from the simple accumulation of
their separate influence. We remove one operation for both
edges simultaneously and enumerate all candidate operation
combinations to show the results. As Fig. 2b illustrates, re-
moving conv 3x3 on the 4th edge and conv 1x1 on the 5th
edge results in the most significant degradation, while re-
moving the combination of skip connect and conv 3x3 only
lead to 3.88% performance drop.
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Figure 2. The performance drop caused by (a) removing the tar-
get operation on the 4th and 5th edge separately (b) removing one
operation on both edges at the same time and enumerating all com-
binations.

This observation reveals the complex relationships be-
tween different operations on different edges: some op-
erations can collaborate with each other and thus have a
significant joint contribution to the supernet performance.
To deal with such relationships, we leverage Shapley value
[31, 32], an important solution from cooperative game the-
ory, to evaluate the individual contribution. Specifically, the
differentiable architecture search process can be uniquely
mapped into a cooperative game, providing a practical
scheme to quantify the operation contribution based on
Shapley value. In a cooperative game, N players associate
with each other, and a value function V maps each subset of
players S ⊆ N to a real value V (S), which represents the
expected payoff the players can obtain by cooperation. In
differentiable NAS, the supernet is composed of several lay-
ers with identical cell structures, and each cell has |E| edges
each with |O| operations. Therefore, a set of individual op-
erations, N = O×E = {o(i,j)}o∈O,(i,j)∈E , can be modeled
as players in the cooperative game, where all players work
together towards the supernet’s performance V (N). Shap-
ley value is utilized to distribute the total performance gains
V (N) to each player in N . In our problem, for operation
o(i,j), its Shapley value ϕ

(i,j)
o can be computed as:

ϕ(i,j)
o (V ) =

1

|N |
∑

S⊆N\{o(i,j)}

V (S ∪ {o(i,j)})− V (S)(|N |−1
|S|

)
(3)

The Shapley value represents the average marginal con-
tribution of the operation to the network performance,
which is obtained by evaluating the performance difference
between all operation subsets and their counterparts without
the given operation. Here we use the validation accuracy as
the value function V to measure the network performance.
It has been proved that the formulation of Shapley value
in Eq. (3) makes it the only method to quantify individual
contributions that uniquely satisfies the following proper-
ties [32], which we interpret according to our problem:

Efficiency The performance of the entire supernet
is the sum of contributions of individual operations, i.e.∑

o(i,j)∈N ϕ
(i,j)
o = V (N).

Null Player If the operation has no impact on the per-
formance when added to or removed from any subsets of the
supernet, then its contribution is zero. That is, if V (S) =
V (S ∪ {o(i,j)}) for any operation subset S ⊆ N \ {o(i,j)},
we can derive ϕ

(i,j)
o = 0. For example, the zero operation

in the search space of DARTS has no impact on the final
performance and thus has zero contribution.

Symmetry If two different operations could be ex-
changed without affecting the performance, they should be
assigned with equal contributions. For any operation subset
S ⊆ N\{o(i,j), o′(k,l)}, V (S∪{o(i,j)}) = V (S∪{o′(k,l)}),
then we have ϕ

(i,j)
o = ϕ

(k,l)
o′ .

3.3. Shapley Value Approximation

Although Shapley value can be considered as a desir-
able attribution metric for quantifying the contribution of
operations, directly computing Shapley value from Eq. (3)
requires 2|O|×|E| network evaluations caused by enumerat-
ing all possible subsets. Therefore, the exact computation
of Shapley value becomes expensive since |O| × |E| in the
common search space is usually large. To efficiently esti-
mate the Shapley value, we present an approximate method
based on Monte-Carlo sampling [5]. Specifically, the Shap-
ley value of operation o(i,j)(denoted as o for simplicity)
is equivalent to estimating the mean of a random variable,
which can be written as:

ϕo(V ) =
1

N !

∑
R∈π(N)

[V (Preo(R) ∪ {o})− V (Preo(R))]

(4)
where π(N) denotes the set of permutations of all elements
in N , and Preo(R) is the set of predecessors of o in a given
permutation R ∈ π(N). Based on Eq. (4), we can get an
unbiased approximation of every operation’s Shapley value
by sampling permutations of operation set N . Notably, the
Monte-Carlo estimation reduces the exponential calculation
complexity to polynomial-time M × (|O| × |E|), where M
is the number of samples. Although this sampling-based es-
timation requires repetitions of accuracy evaluation on the
validation set, it only includes the forward process through
the supernet with no need for back-propagation, thus en-
abling efficient approximation of Shapley value.

Moreover, we find when the number of operations in
Preo(R) becomes too small, the task performance degrades
dramatically and yields unstable sampling results. There-
fore, to reduce the fluctuation of Shapley value estimation,
we utilize the early truncation technique during the Monte-
Carlo sampling procedure. Specifically, when the masked
out operations lead to an extreme performance drop exceed-
ing a pre-defined threshold η, we break off the current sam-



pling. This early truncation technique also reduces nearly
half of computation cost, which makes the overall computa-
tional overheads comparable with gradient-based architec-
ture parameter optimization in DARTS.

3.4. Shapley-based Architecture Search

We leverage the Shapley value of operations to guide the
architecture search to find the best solutions as it reveals the
actual operation contribution to performance. Fig. 1 shows
the difference between our Shapley-NAS and conventional
differential NAS. Instead of updating the architecture pa-
rameters by gradient descent, we utilize the Shapley value
to represent the relative strength of operations. Specifically,
the search objective should be modified as follows:

α ∝ ϕ(Lval(w
∗, α))) s.t. w∗ = argmin

w
Ltrain(w,α).

(5)
Since solving the above problem exactly is impractical,

we optimize this objective via an approximate way. We up-
date α according to the Shapley value estimated by the al-
gorithm presented in Sec. 3.3:

αt = αt−1 + ϵ · st
||st||2

(6)

where αt means the architecture parameter at the t-th
step during the optimization, st represents the accumulated
Shapley value in the tth step, || · ||2 is the L2 norm and
ϵ is the step size. We iteratively optimize wt by descend-
ing ∇Ltrain(wt−1,αt−1) and update architecture parame-
ters α until convergence. To reduce undesired fluctuation
in updating caused by random sampling, we introduce the
momentum into the iteration to stabilize the optimization:

st = µ ·st−1+(1−µ) · ϕ(Accval(wt−1,αt−1))

||ϕ(Accval(wt−1,αt−1))||2
(7)

where µ is the momentum coefficient that balances the ac-
cumulated Shapley value and the current sampling result,
Accval is the validation accuracy used as value function,
and wt−1 is the supernet weights at (t− 1) step. After the
search stage, we derive the final architecture by selecting
the operation with the largest contribution on each edge.

4. Experiments
In this part, we conducted extensive experiments to eval-

uate our method on the DARTS search space with CIFAR-
10 [19] and ImageNet [9] for image classification, as well
as on a widely used NAS benchmark dataset, NAS-Bench-
201 [11]. We first introduce the datasets and implementa-
tion details of our Shapley-NAS. In the following ablation
study, we analyzed the effectiveness of the proposed Shap-
ley value evaluation, as well as the influence of hyperparam-
eters on task performance and search cost. We compare our

Shapley-NAS with the state-of-the-art methods with respect
to the accuracy, model complexity, and search cost. Finally,
we empirically demonstrated the effectiveness of Monte-
Carlo sampling estimation, as well as the high correlation
between obtained Shapley value and task performance.

4.1. Datasets and Implementation Details

CIFAR-10: For the CNN search space on CIFAR-10,
we employed the same operation space O as DARTS and set
the initial channel number as 16. We utilized the partial con-
nection strategy in PC-DARTS [40] to reduce memory over-
head and increase batch size. We trained the supernet for 50
epochs (the first 15 epochs for warm-up) with a batch size
of 256. The training set of CIFAR-10 was divided into two
parts with equal size, one for optimizing network weights
and the other for evaluating Shapley value. We set the num-
ber of samples M to be 10 in the Monte-Carlo sampling and
the early truncation threshold η to be 0.5. The momentum
coefficient µ and step size ϵ were assigned to 0.8 and 0.1
respectively. At the evaluation phase, We simply followed
the DARTS experimental settings for fair comparison and
retrained the network from scratch for 600 epochs.

ImageNet: ImageNet contains about 1.2 million training
and 50K validation images from 1000 categories, which is
much more challenging than CIFAR-10. We randomly sam-
pled 10% and 2.5% images from the entire 1.3M training
set of ImageNet for training network weights and estimat-
ing Shapley value respectively. The supernet was trained
for 50 epochs with batch size 1024 and the architecture pa-
rameters remained frozen in the first 25 epochs. The other
hyper-parameters were the same with CIFAR-10. At the
evaluation stage, we trained the network from scratch for
250 epochs by an SGD optimizer with a linearly decayed
learning rate initialized as 0.5, a momentum of 0.9, and a
weight decay of 3× 10−5.

NAS-Bench-201: NAS-Bench-201 is a popular bench-
mark to analyze NAS algorithms, as it provides perfor-
mance of all candidate architectures which can be directly
obtained by querying. In the search space of NAS-Bench-
201, the operation set O has 5 elements and each cell con-
tains 4 nodes, leading to a total search space of 15,625 archi-
tectures. NAS-Bench-201 supports three datasets, CIFAR-
10, CIFAR-100, and ImageNet-16-120, and more details
about the datasets can be found in their paper [11]. Specifi-
cally, we acquired the task-specific performance by directly
searching on the evaluation dataset, and obtained the mean
and standard deviation for the best architecture from 4 in-
dependent runs with different random seeds.

4.2. Ablation Study

Effectiveness of Shapley value evaluation: To verify
the effectiveness of Shapley-NAS, we conducted experi-
ments on 4 simplified search spaces S1-S4 proposed by



Table 1. The test error(%) of different search algorithms on S1-S4.
DARTS+Shapley denotes the combination of DARTS and Shapley
value evaluation, and ∗ means freezing α during the search.

Dataset Method S1 S2 S3 S4

C10

DARTS 3.84 4.85 3.34 7.20
DARTS+Shapley 3.11 2.92 2.58 3.45
DARTS+Shapley∗ 2.95 2.84 2.67 2.94

Shapley-NAS 2.82 2.55 2.42 2.63

C100

DARTS 29.46 26.05 28.90 22.85
DARTS+Shapley 28.21 24.51 23.67 22.78
DARTS+Shapley∗ 25.24 24.66 22.39 22.15

Shapley-NAS 23.60 22.77 21.92 21.53

SVHN

DARTS 4.58 3.53 3.41 3.05
DARTS+Shapley 2.59 2.72 2.83 2.65
DARTS+Shapley∗ 2.88 2.64 2.49 2.58

Shapley-NAS 2.36 2.43 2.34 2.41

[43] on CIFAR-10, CIFAR100, and SVHN. We first com-
bined the proposed Shapley value evaluation method with
DARTS (denoted as DARTS+Shapley in Tab. 1, by only ap-
plying Shapley value evaluation at the final discretization
step, i.e. selecting operations based on their Shapley val-
ues instead of α. Moreover, we also tested the performance
under the same setting but keeping α frozen, denoted as
DARTS+Shapley∗. As shown in Tab. 1, DARTS achieves
competitive results with the proposed Shapley evaluation
method, even when α is not optimized in the training. No-
tably, our Shapley-NAS still outperforms DARTS+Shapley
and DARTS+Shapley∗, since taking Shapley value into
the supernet optimization can further alleviate the problem
caused by gradient-based NAS methods.

Influence of samples times M and early truncation
threshold η: We also explored the influence of sampling
times M and early truncation threshold η in the Monte-
Carlo sampling algorithm. The values of sampling times
M and early truncation threshold η are significant for ac-
curate Shapley value estimation, which also affect the over-
all search cost. Fig. 3 shows the test error (%) and search
cost (GPU days) on CIFAR-10 with various M and η. Re-
ducing the number of samples results in lower search cost
while degrading the performance since the sampling is not
enough to make an accurate estimation. However, the es-
timation accuracy with samples larger than 10 is not sensi-
tive to the number of samples, and we choose M = 10 for
search efficiency. Meanwhile, medium η also achieves the
best accuracy-complexity trade-off as it mitigates the fluc-
tuation of sampling and reduces the search cost.

Impact of momentum coefficient µ and step size ϵ:
To investigate the influence of momentum coefficient µ
and step size ϵ on test accuracy, we implemented the ar-
chitecture parameter assignment with different µ and ϵ.
The test error range and model parameter cost are demon-
strated in Tab. 2, where medium ϵ outperforms other val-
ues. Small step sizes fail to achieve the optimal distribution
when reaching the maximum update iterations, and large
step sizes make the supernet optimization hard to converge.
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Figure 3. The test error (%) and search cost (GPU days) of the pro-
posed method on CIFAR-10 with (a) different number of samples
and (b) various thresholds of early truncation in the Monte-Carlo
sampling for Shapley value estimation.

With the increase of µ, the training stabilization becomes
enforced, where µ with 0.8 achieves the best accuracy.

4.3. Comparison with the State-of-the-art NAS
Methods

Tab. 3 shows the performance of Shapley-NAS on
CIFAR-10 compared with the state-of-the-art NAS meth-
ods. Our Shapley-NAS achieves an average test error of
2.47% while only using 0.3 GPU days, significantly sur-
passing the DARTS baseline in both search cost and accu-
racy. The test error of the best single run in our experi-
ments is 2.43%, ranking top amongst popular NAS meth-
ods. Although ProxylessNAS [4] achieves a lower test er-
ror of 2.08%, it performs architecture search on a differ-
ent space with heavy search cost. The low variance of the
experimental results also demonstrates the stability of the
proposed search method.

The comparison results on ImageNet with other methods
are demonstrated in Tab. 4. We follow the mobile setting
in [23] for ImageNet, where the number of multiply-add
operations (“×+”) is restricted to be less than 600M. We
trained the best-found architecture on CIFAR-10 to evalu-
ate its transferability to ImageNet and obtained a competi-
tive result with 24.3%/7.3% top-1/5 test error, verifying the
generalization ability of our Shapley-NAS. We also evalu-
ated the optimal architecture directly searched on ImageNet
and obtain a top-1/5 test error of 23.9%/7.2%, which out-
performs all other NAS methods with light search cost. No-
tably, despite the outstanding performance of DrNAS, it has
a number of multiply-add operations much over 600M. By
contrast, out Shapley-NAS never violates the mobile setting
while achieving competitive results.

For NAS-Bench-201, our Shapley-NAS achieves out-
standing performance with 94.37%, 73.51%, and 46.85%
test accuracy on CIFAR-10, CIFAR-100, and ImageNet-16-
120 respectively, as shown in Tab. 5. Notably, we obtain the
global optimal architectures on CIFAR-10 and CIFAR-100,
which indicates that the proposed method can identify im-



Table 2. The test error (%) and parameter storage cost (M) of the final architectures w.r.t. different values of momentum coefficient µ and
different assignments of step size ϵ.

step size ϵ
µ = 0.2 µ = 0.5 µ = 0.8 µ = 0.9

Test Error(%) Params(M) Test Error(%) Params(M) Test Error(%) Params(M) Test Error(%) Params(M)
0.01 2.89± 0.21 4.0 2.87± 0.16 3.7 2.67± 0.06 3.5 2.74± 0.11 3.8
0.05 2.85± 0.18 3.6 2.79± 0.12 3.4 2.55± 0.07 3.2 2.68± 0.07 3.5
0.1 2.82± 0.11 3.7 2.66± 0.10 3.3 2.47± 0.04 3.4 2.61± 0.06 4.1
0.5 2.92± 0.19 3.5 2.84± 0.13 4.2 2.71± 0.12 3.8 2.83± 0.15 3.9

Table 3. Comparison with state-of-the-art image classifiers on
CIFAR-10. Means and standard deviations of our Shapley-NAS
are obtained by repeated experiments with 4 random seeds.

Architecture Test Error
(%)

Params
(M)

Search Cost
(GPU days)

DenseNet-BC [16] 3.46 25.6 -
NASNet-A [49] 2.65 3.3 2000
AmoebaNet-A [30] 3.34± 0.06 3.2 3150
AmoebaNet-B [30] 2.55± 0.05 2.8 3150
PNAS [22] 3.41± 0.09 3.2 225
ENAS [29] 2.89 4.6 0.5
NAONet [26] 3.53 3.1 0.4
RandomNAS [21] 2.85± 0.08 4.3 2.7
DARTS (1st order) [23] 3.00± 0.14 3.3 0.4
DARTS (2nd order) [23] 2.76± 0.09 3.3 1.0
SNAS(moderate) [39] 2.85± 0.02 2.8 1.5
GDAS [10] 2.93 3.4 0.3
BayesNAS [46] 2.81± 0.04 3.4 0.2
ProxylessNAS [4] 2.08 5.7 4.0
P-DARTS [8] 2.50 3.4 0.3
PC-DARTS [40] 2.57± 0.07 3.6 0.1
SGAS (Cri 1. avg) [20] 2.66± 0.24 3.7 0.25
SDARTS-RS [6] 2.61± 0.02 3.4 0.4
DrNAS [7] 2.54± 0.03 4.0 0.4
DARTS+PT [36] 2.61± 0.08 3.0 0.8
Shapley-NAS(avg.) 2.47± 0.04 3.4 0.3
Shapley-NAS(best) 2.43 3.6 0.3

Table 4. Comparison with state-of-the-art image classifiers on Im-
ageNet under the mobile setting [23]. † indicates the results ob-
tained by searching on ImageNet, otherwise on CIFAR-10.

Architecture Test Error
(%)

Params
(M)

×+
(M)

Search Cost
(GPU days)

Inception-v1 [34] 30.1 6.6 1448 -
MobileNet [15] 29.4 4.2 569 -
ShuffleNet 2× (v1) [45] 26.4 ∼ 5 524 -
ShuffleNet 2× (v2) [27] 25.1 ∼ 5 591 -
NASNet-A [49] 26.0 5.3 564 2000
AmoebaNet-C [30] 24.3 6.4 570 3150
PNAS [22] 25.8 5.1 588 225
MnasNet-92 [35] 25.2 4.4 388 -
DARTS (2nd) [23] 26.7 4.7 574 1.0
SNAS (mild) [39] 27.3 4.3 522 1.5
GDAS [10] 26.0 5.3 545 0.3
BayesNAS [46] 26.5 3.9 - 0.2
ProxylessNAS (GPU) [4]† 24.9 7.1 465 8.3
P-DARTS [8] 24.4 4.9 557 0.3
PC-DARTS [40] 25.1 5.3 586 0.1
PC-DARTS [40]† 24.2 5.3 582 3.8
SGAS (Cri 1. best) [20] 24.2 5.3 585 0.25
SDARTS-ADV [6] 25.6 6.1 - 0.4
DrNAS [7]† 24.2 5.2 644 3.9
DARTS+PT [36]† 25.5 4.7 538 3.4
Shapley-NAS 24.3 5.1 566 0.3
Shapley-NAS† 23.9 5.4 582 4.2

portant operations and derive the best architecture from the
large search space. On the ImageNet-16-120 dataset, we
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Figure 4. The evolution of architecture parameters α by estimat-
ing Shapley value based on Monte-Carlo Sampling. (a) The curves
of α on the first edge of the normal cell. (b) The curves of α on
the first edge of the reduction cell.

also acquire a near-optimal solution, which outperforms the
state-of-the-art algorithms, again verifying the effectiveness
of our Shapley-NAS.

5. Performance Analysis

Shapley value estimation by Monte-Carlo Sampling:
To verify the effectiveness of Monte-Carlo Sampling for
Shapley value approximation, we plot the architecture pa-
rameters evolution on the first edge of normal and reduction
cells in Fig. 4. Note that the curves of the first 15 epochs for
warm-up are not presented. As Fig. 4a shows, although the
max pool 3x3 operation is larger than all other operations
at the start, the operation sep conv 5x5 finally becomes the
strongest operation since it has the most contribution to the
supernet along with the training process. While in Fig. 4b,
the operation sep conv 3x3 becomes dominant after sev-
eral epochs, while other operations gradually converge to
be very weak. The supernet gradually converges to the final
derived architecture using the proposed estimation. More-
over, the architecture parameters are differentiated to make
the argmax selection more reliable.

Correlation between Shapley value and task perfor-
mance: We investigate the correlation between Shapley
value of operations and real task performance on NAS-
Bench-201. After the search phase, we sample 200 dis-
crete architectures from the search space and compute their
corresponding operation strength by averaging the magni-
tude of architecture parameters. Then we plot the test ac-
curacy obtained by directly querying along with the com-
puted operation strength of DARTS and our Shapley-NAS.
We use the Kendall Tau coefficient to measure the cor-
relation, and the results on CIFAR-10, CIFAR-100, and



Table 5. Comparison results with state-of-the-art NAS methods on NAS-Bench-201. † denotes the results are obtained by searching on
CIFAR-10, otherwise by directly searching on the evaluation dataset.

Method CIFAR-10 CIFAR-100 ImageNet-16-120
validation test validation test validation test

ResNet [14] 90.83 93.97 70.42 70.86 44.53 43.63
Random (baseline) 90.93± 0.36 93.70± 0.36 70.60± 1.37 70.65± 1.38 42.92± 2.00 42.96± 2.15
RSPS [21] 84.16± 1.69 87.66± 1.69 45.78± 6.33 46.60± 6.57 31.09± 5.65 30.78± 6.12
REINFORCE [49]† 91.09± 0.37 93.85± 0.37 71.61± 1.12 71.71± 1.09 45.05± 1.02 45.24± 1.18
ENAS [29] 39.77± 0.00 54.30± 0.00 10.23± 0.12 10.62± 0.27 16.43± 0.00 16.32± 0.00
DARTS [23]† 39.77± 0.00 54.30± 0.00 15.03± 0.00 15.61± 0.00 16.43± 0.00 16.32± 0.00
DARTS [23] 39.77± 0.00 54.30± 0.00 38.57± 0.00 38.97± 0.00 18.87± 0.00 18.41± 0.00
SNAS [39] 90.10± 1.04 92.77± 0.83 69.69± 2.39 69.34± 1.98 42.84± 1.79 43.16± 2.64
GDAS [10] 90.01± 0.46 93.23± 0.23 24.05± 8.12 24.20± 8.08 40.66± 0.00 41.02± 0.00
PC-DARTS [40] 89.96± 0.15 93.41± 0.30 67.12± 0.39 67.48± 0.89 40.83± 0.08 41.31± 0.22
iDARTS [44]† 89.96± 0.60 93.58± 0.32 70.57± 0.24 70.83± 0.48 40.38± 0.59 40.89± 0.68
DrNAS [7] 91.55± 0.00 94.36± 0.00 73.49± 0.00 73.51± 0.00 46.37± 0.00 46.34± 0.00
Shapley-NAS 91.61± 0.00 94.37± 0.00 73.49± 0.00 73.51± 0.00 46.57± 0.08 46.85± 0.12
optimal 91.61 94.37 73.49 73.51 46.77 47.31
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Figure 5. Correlation between operation strength and test accuracy of 200 sampled architectures using DARTS and our Shapley NAS on
NAS-Bench-201. The average operation strength is obtained by the magnitude of corresponding architecture parameters in the supernet,
and τ is the Kendall Tau coefficient that measures the correlation.

ImageNet-16-120 are shown in Fig. 5. The Shapley value
of operations has a higher correlation with the test accuracy
(τ = 0.526, 0.474, 0.357 respectively), while the magni-
tude of α in DARTS is almost entirely uncorrelated with
the final task performance. It indicates the effectiveness of
Shapley value to help us discover optimal architectures with
superior performance during the evaluation phase.

6. Conclusion and Discussion

In this paper, we have presented Shapley-NAS, a Shap-
ley value based operation contribution evaluation method
for neural architecture search. Since the architecture pa-
rameters updated by gradient descent in DARTS cannot re-
veal the actual operation importance in general, we pro-
pose to directly evaluate the marginal contribution of op-
erations on accuracy via Shapley value. Specifically, the
Shapley value of operations can be efficiently approximated
by Monte-Carlo sampling based algorithm with early trun-
cation, thus enabling the optimization of the supernet whose
architecture parameters are directly updated with the op-
eration contribution. Shapley-NAS achieves state-of-the-
art performance on CIFAR-10, ImageNet, and NAS-Bench-

201 benchmarks, which proves its effectiveness to identify
the optimal architectures with the most important opera-
tions in neural architecture search.

Limitations: The exact computation of Shapley value
is expensive on common search space since it needs expo-
nential times of evaluations, and the resulting heavy search
burdens would limit the practical applications for task-
specific network deployment. Therefore, to evaluate oper-
ation contribution during the architecture search, we utilize
the Monte-Carlo sampling method which gives an unbiased
approximation of Shapley value. Despite being computa-
tionally efficient, it might not be as accurate as the exact
computation via enumerating all possible subsets.
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[5] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial
calculation of the shapley value based on sampling. Comput.
Oper. Res., 36(5):1726–1730, 2009. 4

[6] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. In ICML, pages 1554–1565, 2020. 2, 7

[7] Xiangning Chen, Ruochen Wang, Minhao Cheng, Xi-
aocheng Tang, and Cho-Jui Hsieh. Drnas: Dirichlet neural
architecture search. arXiv preprint arXiv:2006.10355, 2020.
2, 7, 8

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In ICCV, pages 1294–1303,
2019. 2, 7

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 2, 5

[10] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In CVPR, pages 1761–1770,
2019. 2, 7, 8

[11] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020. 2, 5

[12] Amirata Ghorbani and James Zou. Data shapley: Equitable
valuation of data for machine learning. In ICML, pages
2242–2251, 2019. 3

[13] Amirata Ghorbani and James Zou. Neuron shapley:
Discovering the responsible neurons. arXiv preprint
arXiv:2002.09815, 2020. 2, 3

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 8

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017. 7

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, pages 4700–4708, 2017. 7

[17] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 2

[18] Ruoxi Jia, David Dao, Boxin Wang, Frances Ann Hubis,
Nick Hynes, Nezihe Merve Gürel, Bo Li, Ce Zhang, Dawn
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