
Shapley-NAS: Discovering Operation Contribution for Neural
Architecture Search

Han Xiao1,2, Ziwei Wang1,2, Zheng Zhu1,2, Jie Zhou1,2, Jiwen Lu1,2∗,
1Department of Automation, Tsinghua University, China

2Beijing National Research Center for Information Science and Technology, China
{h-xiao20,wang-zw18}@mails.tsinghua.edu.cn; zhengzhu@ieee.org; {jzhou,lujiwen}@tsinghua.edu.cn

A. Detailed Algorithms
A.1. The Monte-Carlo sampling algorithm for

Shapley value estimation

The complete algorithm of Monte-Carlo sampling with
early truncation for Shapley value estimation is illustrated
in Algorithm 1. As mentioned in Section 3.3 (main body),
Eq. (3) can be equivalently formulated as Eq. (4) if we con-
sider all the possible joining orders of the operations [2]. In
each joining order, when an operation is added to the su-
pernet, it makes a marginal contribution compared with the
operations that have been added before it. Viewing this pro-
cess as a random variable, we can utilize the Monte-Carlo
method by sampling from the uniform distribution over the
set of all N ! permutations π(N), where each permutation
represents a distinct joining order. For each new operation
in the permutation, we remove it from the supernet and cal-
culate the performance drop caused by only removing this
operation. This marginal contribution of the operation is
one Monte-Carlo sample of its Shapley value. We repeat
the same process over multiple Monte Carlo permutations
and take the average of all marginal contributions to derive
the final estimation of the Shapley values.

A.2. The full algorithm of Shapley-NAS

The iterative procedure of our Shapley-NAS is shown
in Algorithm 2. We first pre-train a supernet by only fine-
tuning its network weight w while keeping architecture pa-
rameters α frozen. This warm-up process is essential for
the initialized Shapley estimation and we keep α frozen to
ensure a reasonable computation. After that, we iteratively
optimize the network weight w and the mixing operation
weight α according to its Shapley value estimated by Algo-
rithm 1. The momentum update is introduced to reduce the
fluctuation of the Monte-Carlo sampling. After the search
stage, we select the operation with the largest accumulated
Shapley value on each edge to get the final architecture.

∗Corresponding author

Algorithm 1: Shapley value Estimation
Input: Supernet components

N = O × E = {o(i,j)}o∈O,(i,j)∈E ,
performance evaluation metric V , sampling
times M , early truncation threshold η

Output: Shapley value of operations
{ϕ(i,j)

o }o∈O,(i,j)∈E

Initialization:Shapley of operation {ϕ(i,j)
o } = 0,

t = 0.
while t < M do

Randomly generate a permutation R of N ;
v0 = V (N);
for k = 1, 2, ..., |N | do

if vk−1 > η · V (N) and R[k] ̸= zero then
mask out operation R[k], re-evaluate the

validation accuracy V and update vk:
vk = V (R[k + 1], R[k + 2], ..., R[n]);

end
else

vk = vk−1

end
ϕR[k] = ϕR[k] + (vk−1 − vk)

end
end
Return ϕ

(i,j)
o = ϕ

(i,j)
o /M, for o(i,j) ∈ N .

B. Experimental Results

B.1. Training Details

CIFAR-10: The CIFAR-10 dataset [7] includes 60K im-
ages equally divided into 10 classes, all of which are with
the size of 32×32. We keep the same operation space
O as DARTS, including 3×3 and 5×5 separable convo-
lutions, 3×3 and 5×5 dilated separable convolutions, 3×3
max pooling, 3×3 average pooling, skip connect (i.e., iden-
tity) and zero (i.e., none). At the search phase, we construct

1

Algorithm 2: Shapley-NAS
Input: Initialized supernet weights w0 and architecture parameters α0, warm-up epochs T1, search epochs T2,

momentum efficient µ, step size ϵ.
Output: The final architecture with chosen operation on every edge {o(i,j)}.
Initialization:accumulated Shapley s0 = 0, t = 0.
Stage 1 (Warm-up)
while t < T1 do

Update supernet weights wt by descending ∇wLtrain(wt−1,αt−1);
t = t+ 1;

end
Stage 2 (Architecture Search)
while t < T2 do

Update supernet weights wt by descending ∇wLtrain(wt−1,αt−1);
Estimate the Shapley value ϕ(Accval(wt−1,αt−1)) by Monte-Carlo sampling according to Algorithm 1;
Compute the accumulated Shapley value: st = µ · st−1 + (1− µ) · ϕ(Accval(wt−1,αt−1))

||ϕ(Accval(wt−1,αt−1))||2 ;
Update architecture parameters: αt = αt−1 + ϵ · st

||st||2 ;
t = t+ 1;

end
Derive the final architecture through argmax: o(i,j) = argmaxo∈O α

(i,j)
o .

c_{k-2} 0sep_conv_3x3

1

dil_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_3x3 3
sep_conv_3x3

2
dil_conv_3x3

c_{k}skip_connect

dil_conv_5x5

(a) Normal Cell

c_{k-2}

0

max_pool_3x3
1

sep_conv_3x3 2

max_pool_3x3

c_{k-1} sep_conv_3x3 dil_conv_5x5

sep_conv_3x3

3skip_connect
c_{k}dil_conv_3x3

(b) Reduction Cell

Figure 6. Normal and Reduction cells discovered by Shapley-NAS on CIFAR-10

c_{k-2}

0

sep_conv_5x5
2

sep_conv_5x5

c_{k-1}

sep_conv_3x3

1

skip_connect

3

sep_conv_3x3

dil_conv_5x5

sep_conv_3x3

skip_connect c_{k}

(a) Normal Cell

c_{k-2} 0dil_conv_3x3

c_{k-1}
sep_conv_3x3

1sep_conv_5x5
2

skip_connect

avg_pool_3x3
3sep_conv_3x3

c_{k}

sep_conv_3x3
sep_conv_3x3

(b) Reduction Cell

Figure 7. Normal and Reduction cells discovered by Shapley-NAS on ImageNet

the supernet by stacking 8 cells (6 normal cells and 2 reduc-
tion cells) and set the initial channel number as 16. Each
cell has N = 7 nodes (2 input nodes, 4 intermediate nodes,
and 1 output node). The reduction cells are placed at the
1/3 and 2/3 of the total depth of the network. At the evalu-
ation phase, we stack 20 cells including 18 normal cells and
2 reduction cells with the initial channel number being 36
to form the architecture. Then we retrain the network from
scratch for 600 epochs on the entire 50K training set. We
employ the SGD optimizer with a cosine annealing learning

rate initialized as 0.025, a momentum of 0.9, and a weight
decay of 3×10−4. We also use the cutout with length 16 [5]
and drop-path [9] with a rate of 0.3 for regularization.

ImageNet: Different from the architecture for CIFAR-
10, the network for ImageNet [4] starts with three convolu-
tion layers with stride of 2 which reduce the input resolution
from 224× 224 to 28× 28 following previous works [3,8].
At the evaluation stage, the network is composed of 14 cells
(18 normal cells and 2 reduction cells) and the initial chan-
nel number is 48. We train the network from scratch for 250

Table 6. Ablation study on PPI dataset.
Shapley value

evaluation
MC

sampling Optimizer Micro-F1
(%)

Search Cost
(GPU days)

✘ ✘ ✘ 98.58± 0.38 0.002
✔ ✘ ✘ 99.39± 0.11 0.9
✔ ✔ ✘ 99.34± 0.15 0.002
✔ ✘ ✔ 99.45± 0.06 0.9
✔ ✔ ✔ 99.43± 0.08 0.002

epochs by an SGD optimizer with a linearly decayed learn-
ing rate initialized as 0.5, a momentum of 0.9, and a weight
decay of 3 × 10−5. Similar to previous works [3, 8], label
smoothing and an auxiliary loss tower are employed during
the training.

NAS-Bench-201: In the search space of NAS-Bench-
201 [6], the operation set O has 5 elements (zero, skip con-
nection, 1 × 1 and 3 × 3 convolution, and 3 × 3 average
pooling) and each cell contains 4 nodes, which results in
a total search space of 15,625 architectures. NAS-Bench-
201 supports three datasets, CIFAR-10, CIFAR-100, and
ImageNet-16-120, and we use the results obtained by train-
ing 12 epochs on CIFAR-10, and 200 epochs on CIFAR-100
and ImageNet-16-120. Specifically, we evaluate the task-
specific performance by directly searching on the evalua-
tion dataset. We keep the hyper-parameters in the search
and evaluation phase the same as CIFAR-10 and report the
mean and standard deviation for the best architecture from
4 independent runs with different random seeds.

B.2. Visualization of searched cells

We visualize the best normal and reduction cells dis-
covered by our Shapley-NAS. Fig. 6 shows the best cells
found on CIFAR-10 [7], which yield 2.43% test error using
3.6M parameters. Fig. 7 shows the best cells found on Ima-
geNet [4], which achieve 23.9% top-1 test error with 5.3M
parameters and 582M multiply-add operations. The best re-
duction cells are deeper than the normal cells found on both
datasets, which indicates reduction cells might need more
complex architectures compared with normal cells since the
purpose of reduction cells is to reduce the feature map di-
mensions. Meanwhile, both types of the found cells on Ima-
geNet are deeper than on CIFAR-10, which suggests the op-
timal architecture for ImageNet is more sophisticated since
the image classification task on ImageNet is much more
challenging than on CIFAR-10.

B.3. Additional Experimental Results

Contributions of different components in Shapley-
NAS. We conduct a systematic ablation study to evaluate
the contributions of three components in Shapley-NAS, i.e.
Shapley value as the optimization objective, Monte-Carlo
sampling for approximation, and the specific optimizer in
section 3.4. Since the exact computation of Shapley value
on large datasets may by expensive, we search for the GCN
architecture for node classification on a small dataset PPI.

Table 7. Results on ImageNet using MobileNet-like search space.

Architecture Top-1 Acc
(%)

Params
(M)

×+
(M)

Search Cost
(GPU days)

FairNAS-A 75.3 4.6 388 12
Proxyless 75.1 7.1 465 8.3
FairDARTS-D 75.6 4.3 440 3
SPOS 74.8 5.4 472 -
Shapley-NAS 76.1 4.8 468 3.2

As shown in Tab. 6, only Shapley value evaluation improves
the Micro-F1 score by 0.81% but leads to heavy search cost.
Monte-Carlo sampling significantly reduces that cost while
maintaining comparable performance. The optimizer can
further improve the result of architecture search in both ac-
curacy and stability.

Experiments on MobileNet-like search space. We
conduct further experiments on ImageNet using MobileNet-
like search space proposed in ProxylessNAS [1]. For fair
comparison, we restrict the FLOPs of the searched model
to be less than 470M. As shown in Tab. 7, our Shapley-
NAS obtains 76.1% top-1 accuracy with only 468M FLOPs,
verifying that our method can achieve effective results over
different search spaces.

References
[1] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv
preprint arXiv:1812.00332, 2018. 3

[2] Javier Castro, Daniel Gómez, and Juan Tejada. Polynomial
calculation of the shapley value based on sampling. Comput.
Oper. Res., 36(5):1726–1730, 2009. 1

[3] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In ICCV, pages 1294–1303,
2019. 2, 3

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, pages 248–255, 2009. 2, 3

[5] Terrance DeVries and Graham W Taylor. Improved regular-
ization of convolutional neural networks with cutout. arXiv
preprint arXiv:1708.04552, 2017. 2

[6] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending
the scope of reproducible neural architecture search. arXiv
preprint arXiv:2001.00326, 2020. 3

[7] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1, 3

[8] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. arXiv
preprint arXiv:1907.05737, 2019. 2, 3

[9] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, pages 8697–8710, 2018. 2

